
 
 

 

  
Abstract—Cascading failures cause blackouts with high 

social costs. A cascading failure can be thought of as an 
alternating sequence of equipment outages and constraint-
violations. We describe a network of fast-acting, autonomous 
agents for shortening such sequences. The agents work by 
eliminating violations before they can cause further outages. 
They make their decisions with DMPC—a distributed 
adaptation of the Model Predictive Control technique. Each 
agent has a suite of models, specialized for its location in the 
grid. It uses these models to predict what the other agents will 
do and how the grid will respond. Each agent optimizes its 
decisions with respect to the predictions. In tests on small 
grids, these prediction-based optima come close to the true, 
global optima. In other words, the agents seem able to make 
good decisions. Future work includes extending the tests to 
larger grids, and augmenting DMPC with cooperation and 
automatic learning. 

I. INTRODUCTION 

A cascading failure is a progression of equipment 
outages, one outage propagating another. Long progressions 
result in large blackouts and usually begin with a bizarre, 
often compound, disturbance, such as a short circuit whose 
effects are compounded by several relay misoperations. 
Though relatively rare, such compound disturbances occur 
frequently enough to give the distribution of large blackouts 
a fat tail. Large blackouts happen much more frequently 
than an exponentially falling tail, as is the tail of a normal 
distribution, would predict [1]. 

We will not try to prevent all cascading failures. Indeed, 
there is reason to believe that complete prevention is 
impossible [1]. Briefly, the set of all possible compound 
disturbances is very large. One can design and test measures 
to make the grid invulnerable to only a small subset of the 
possible disturbances. At best, this leaves the grid still 
vulnerable to a great many disturbances. At worst, it makes 
the grid more vulnerable to the untested disturbances.  
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Our goal, based on the conjecture that cascading failures 
are inevitable, is to provide grids with reflexes that 
minimize the social cost of these failures, and the extents of 
the resulting blackouts. 

A. Approach 

Our approach is to design a network of autonomous, 
software agents, each at a different node of the electric grid. 
Each of these agents works with locally available 
information (whatever it is able to collect from its own 
sensors and neighboring agents), and controls only a few 
local variables (such as the amount of load to be shed at its 
node). Therefore, each agent can react much faster than a 
centralized controller, which would have to collect 
information from the entire grid, and decide on the values 
of all the control variables. We believe that the additional 
speed made possible by a network of distributed agents is 
critical to the control of cascading failures.   

Besides being much faster, networks of autonomous 
agents are also more robust and open than centralized 
agents. But distributed agents are not without 
disadvantages: they can be uncoordinated and parochial. To 
the extent that each agent is autonomous, it can do what it 
wants, and therefore, can work at cross-purposes to the 
other agents. Because each agent works with less than 
complete information, it can, at best, make locally correct 
decisions—which can be globally wrong. 

B. Causes of Cascading Failures 

Cascading failures occur because the grid’s existing 
automatic control system is unable to make good tradeoffs 
among certain conflicting objectives.  

Two of the many objectives in operating a power grid 
are: protect equipment from damage, and keep equipment in 
service. Overloads bring these two objectives into conflict. 
The control system (specifically, the protection subsystem) 
is incapable of finding good tradeoffs to resolve this 
conflict. Instead, whenever the overloads last long enough 
to endanger equipment, the protection subsystem removes 
the threatened equipment from service. When these 
removals produce further overloads, a cascade results. 

C. Decomposition and Model Predictive Control 

The problem we consider here is to minimize the cost of 
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eliminating overloads (more precisely, operating-constraint 
violations) before they endanger equipment or trigger the 
protection subsystem. This overall problem is decomposed 
into sub-problems, one for each agent. The agents work on 
their sub-problems in parallel, using whatever locally 
available information they are able to collect. Of course to 
make globally optimal, or even globally feasible, decisions, 
each agent needs much more information—specifically, the 
state of the entire grid and what every other agent is going 
to do. To compensate for the missing information, we adapt 
MPC (model predictive control) to distributed agents.  

Model predictive control (MPC) is a repetitive procedure 
that combines the advantages of long-term planning (feed-
forward control based on performance predictions over an 
extended horizon) with the advantages of reactive control 
(feedback using measurements of actual performance). At 
the beginning of each repetition, the state of the system to 
be controlled is measured. A time-horizon, stretching into 
the future, is divided into intervals. Models are adopted to 
predict the effects of control actions on system-states in 
these intervals. The predictions are used to plan optimal 
actions for each interval. But only the actions for the first 
interval are implemented. When this interval ends, the 
procedure is repeated. Ref. [2] provides an overview of 
MPC theory and practice for centralized applications.  

MPC, because of its use of optimization for making 
decisions, readily accommodates large numbers of complex 
constraints. Many other control techniques do not allow 
constraints. Instead, they require the designer to 
approximate the effects of constraints with conservative 
assumptions.  

We adapt the MPC procedure for distributed agents by 
adding a second horizon in space (a horizon that stretches 
from each agent to the edges of the grid). Each agent is 
given its own suite of models that look ahead in time, and 
out into the grid. These models predict what the other 
agents will do, and how the network will respond. The 
models decrease in fidelity with distance from the agent at 
the present moment. The method that we use is related to, 
but not a reproduction of, the DMPC method developed by 
Camponogara et al. [3]. 

D. Special Protection Schemes 

While this method is similar to many Special Protection 
Schemes (SPS), it differs from the traditional SPS in that 
the computation is located with the control hardware instead 
of at a central facility. Additionally, this method uses an 
optimization framework that adapts easily to arbitrary 
networks, and changing network conditions. Much has been 
written on the design of SPS. Typically SPS are designed 
by performing numerous network studies and pre-
determining actions that tend to alleviate problems.  Newer 
designs are able to adapt the rules to changing network 
conditions, but still rely on pre-determined rules [4]. Some 

SPS have been presented in the literature that make use of 
distributed agents, though using different designs than that 
presented here. Jung and Liu present a multi-agent method 
designed to avoid catastrophic power failures [5]. While 
their design uses agents for control, the agents are 
dependant on centralized facilities for planning activities. 
Designs also exist for augmenting standard protective 
relaying systems using agent technology [6], though such 
designs still allow violations to propagate through a 
network. 

In what follows, we formulate the global problem of 
controlling the spread of cascading failures; decompose this 
problem into sub-problems, one for each agent; develop a 
DMPC (distributed MPC) procedure by which each agent 
can solve its sub-problem; and demonstrate that the 
solutions are close to being globally optimal. 

II. GLOBAL PROBLEM DEFINITION  

A. Notation 

Let: 
N be the index set of all the nodes in the network. 
n be the index of the agent located at bus n. 
Q be the index set of all the branches in the network. 
V be a complex vector of node voltages.  Vnk is the 

voltage at bus n at time step k. 
I be a complex vector of node current injections. In 

is the injection at bus n. 
G be a complex vector of generation power 

injections.  For the sake of notational simplicity, 
we assume no more than one generator is located 
at each bus. It is fairly easy to incorporate multiple 
generators, but doing so complicates the notation 
somewhat.  

L be a complex vector of load powers.  As above, we 
assume one load at each bus. 

YNN be the complex node admittance matrix for all the 
nodes in the network. 

YQ be the complex branch admittance matrix for the 
set of all branches in the network. 

ynm be the single element of the node admittance 
matrix that is the admittance between buses n and 
m.  

B. Problem formulation 

As discussed above disturbances, such as short circuits 
and sudden generator outages, often cause violations of the 
network’s operating constraints. If these violations persist in 
a network, relays operate or equipment fails, causing 
additional outages. If a set of violations can be eliminated 
before dependant outages occur, a cascading failure will not 
result. 

With this in mind we propose to use the following control 
problem as a means of preventing cascading failures: 



 
 

 

eliminate network violations before subsequent failures 
occur. For the sake of this paper, we consider this to be 
globally correct behavior. This problem can be formulated 
as a standard non-linear programming problem, using the 
steady state power network equations that would ordinarily 
be used in an optimal power flow formulation. Since many 
cascading failures are propagated by under/over-voltage 
conditions at buses and over-current conditions on 
transmission lines, we include these values as violations in 
our formulation. The decision space is any combination of 
load and generation shedding. We assume that both load 
and generation can be shed in continuous quantities. The 
objective function is the social cost of all control actions. 
Therefore, the global, single period control problem (P) is 
stated formally as follows (1a-1h).  
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,
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− −∑       (1a) 
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The costs associated with shedding load (from 1a) are the 
social costs that would be incurred from the interruption of 
electrical service. It may be that some loads are deemed 
more important to the system than others. This property can 
be incorporated into (1a) without difficulty. The costs 
associated with reducing generation come from either the 
potential equipment damage that rapid deceleration could 
cause, or the amount that would have to be paid to an 
independent power producer for such emergency control. 
Equality constraint (1b) defines the voltage-current 
relationships in the network. Equality constraint (1c) 
expresses conservation of energy at each node. Equality 
constraint (1d) forces the system to shed real and reactive 
load in equal proportions. Inequality constraints (1e) and 
(1f) describe the extent to which loads and generation can 
be adjusted. The final inequality constraints (1g and 1h) 
define the measures used to identify violations (bus voltage, 
and line currents), as well as the limits on those measures. 
This formulation can be extended to include constraints on 
the dynamic system, such as frequency or generator “out-of-
phase” limits, but such extensions are beyond the scope of 
this paper.  

Simulations using IEEE test networks indicate that power 
system violations can be eliminated by solving this problem 
and implementing the resulting control actions. As asserted 

in the introduction, we do not presume to be able to 
eliminate all cascading failures using this method. This 
method will not likely do much to control high speed (<1 
second) cascading failures that result primarily from 
machine dynamics. Most cascading failures, however, are 
not of this type and progress over periods of seconds to 
minutes. While the solutions space of P is not necessarily 
convex, we have found that standard non-linear solvers 
reliably find good solutions to this problem for small 
networks (<200 buses). Fig. 1 shows the result of one such 
calculation using the IEEE 39 bus test case. 

 

 
Fig. 1—Optimal load and generation shedding actions resulting from the 
solution of the global problem P on the IEEE 39 bus test case. These are 
the minimum cost actions that eliminate the violations shown. Branch 
current violations are marked with circles. These violations occurred after 
a line outage was applied at the location marked with an X. The arrows 
indicate power flow magnitude and direction. 

III. PROBLEM DECOMPOSITION 

For large-scale power systems, it is impractical or even 
impossible to solve the global control problem in a 
centralized fashion. Doing so would require more 
communication and computation than current technology 
can provide. Additionally, doing so would require that a 
single control center communicate constantly with every 
bus in a given synchronous network. For the U.S. Eastern 
Interconnect, this would mean that a single control center 
would need to manage communication links and data from 
about 50,000 buses. This space is currently managed by 
hundreds of relatively autonomous system operators who 
are often reluctant to share data and control. This level of 
centralized control is institutionally impractical in all but a 
few locations. Thus a decentralized solution is necessary. 

 Given this necessity, our problem is to take the global 
control problem defined in section III and decompose it into 
tractable sub problems that, when solved and implemented 
by distributed agents, result in the desired global behavior. 
This is the general challenge for all distributed control 
problems: to design methods by which locally correct 
decisions result in globally correct decisions.  

Our decomposition method can be described as follows: 

Shed 96 
MW Gen 

Shed 151 
MW Gen 

Shed 125 
MW Load 

Shed 117 
MW Load 

15 Shed 96 
MW Gen 

Shed 151 
MW Gen 

Shed 125 
MW Load 

Shed 117 
MW Load 



 
 

 

•  Place a software agent at each load and generation 
bus 

•  Allow each agent to gather measurements from the 
system through communication networks 

•  Allow each agent to control its local control 
variables 

•  Give the global control problem to each agent 
•  Allow each agent to reduce its problem into 

tractable, local versions of the global problem 
•  Allow each agent to solve its sub-problem 

iteratively using MPC, cooperation, and learning. 
The result is a two-dimensional decomposition of the global 
control problem. Firstly, the problem is decomposed in 
space by assigning the problem to distributed agents with 
local control abilities. Secondly the problem is decomposed 
in time by allowing the agents to act iteratively using MPC, 
harnessing feedback control to improve local solution 
quality. A high level view of this feedback loop and how it 
interacts with operator control is illustrated in Fig. 2. 
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Fig. 2—Feedback diagram of the system showing how operators and the 
agent network interact. Under normal circumstances agents do not make 
adjustments to operator set points, but if a violation occurs, agents work 
together to eliminate the violations by adjusting operator calculated set 
points.  

A. Additional Notation 

Let: 
M be the index set of all nodes (or control variables) 

that agent n includes in it sub-problem. M N⊂  
R be the index set of all branches that agent n 

includes in its local problem. R Q⊂  

u be a vector of control variables: 
Re( )

Re( )

G
u

L

 
=  

 
. 

δ be a vector of control variables changes: 

0u uδ = − . 
uG , uL be subsets of the control vector for generation or 

load. 
c be a vector of costs associated with control 

variable reductions. 

D be a matrix of branch current sensitivity factors 

such that , 1| | | |Qk Q k kI I Dδ−≅ + . 

E be a matrix of bus voltage sensitivity factors such 

that , , 1N k N k kV V Eδ−≅ + . 

K be the final time step in the control time horizon. 
Agents seek to eliminate violations completely by 
this time period.  

ρ be the discount factor used in the MPC cost 
function. 

B. Spatial decomposition 

Since it is infeasible for every agent to maintain a perfect 
model of the entire network, each agent must selectively 
collect enough measurements to get good results for its 
local control variables. In general we have found that an 
agent’s sensitivity (the degree to which the error affects an 
agent’s local decisions) to remote measurement errors 
decreases as the errors are located more remotely. 
Therefore we task each agent with collecting data 
frequently from its immediate neighborhood, and rarely or 
never from distant portions of the network. We assign each 
agent with a sub-network within which the agent collects 
data frequently (several times per second). All of the nodes 
that can be reached by traveling over no more than r 
branches are inside an agent’s sub-network, where r is the 
radius of the sub-network. All other nodes are in an agent’s 
external network. Fig. 3 illustrates spatial decomposition 
using the IEEE 118 bus network. 

 
Fig. 3—Illustration of the spatial decomposition of the global problem (P) 
on the IEEE 118 bus network.  
 

As previously mentioned, solving the full non-linear 
control problem given computational constraints is 
infeasible for a network of practical size. Therefore an 
agent must reduce the global problem into a tractable 
version that can be solved given computational and time 
constraints. The agents do this using a linear-difference 
version of the global problem. This formulation is presented 
below (2a-2d).  
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In this simplification of (P), we reduce all of the non-linear 
equality constraints into a simple balancing constraint (2b) 
that forces the system to choose to shed load and generation 
in equal quantities. While this does not guarantee that the 
system will maintain perfect load balancing, the small errors 
should be easily picked up by existing frequency regulation 
mechanisms. If a significant frequency imbalance were 
detected, (2b) could be weighted to compensate for the 
imbalance. 

This formulation has several distinct advantages over the 
full non-linear problem (P). Constraints that are distant or 
unimportant and remote variables that will not affect the 
final solution can be easily removed from the local problem. 
The difference nature of (2) allows for state measurements 
to be incorporated into the problem, making iterative 
solutions feasible. Finally, compared to (1), (2) is 
noticeably less sensitive to errors in remote control variable 
estimates. This stems from two aspects of the formulation. 
Firstly, it uses the DC load flow approximations to calculate 
the load distribution factor matrix (D) as follows: 

 1Im( ) Im( )QN NND Y Y −= Λ            (3) 

where Λ is a matrix that translates the control variables into 
bus power injections: 
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 (4) 
This allows the agent to calculate D without any knowledge 
of the network state (voltage, current) and control 
(generation, load) variables. An agent must only know the 
status of the branches in the network to obtain the matrix. 
Even if some status errors exist in the agent’s model of 
distant parts of the network, the elements of D will be 
nearly correct. Secondly, the agent only needs to know the 
amount of load and generation at a particular location if it 
decides that the entire quantity should be eliminated from 
the network. Since this case occurs relatively rarely, large 
errors are infrequent. The disadvantage is that solutions to 
(2) will be sub-optimal solutions to (1), even given perfect 
information. This sub-optimality is acceptable since we are 
primarily concerned with eliminating violations. Doing so 
at minimum cost is secondary. 

C. Temporal decomposition 

It is not difficult to adapt the linear difference 
formulation (2) to make use of MPC. We add a time 
dimension to the control vector (δ), giving us a decision 
matrix (∆)—a two dimensional control plan. The cost 
function therefore is a summation of control costs over the 
time horizon. The costs are discounted so that the least 
expensive actions will be chosen first, and more expensive 
actions later. The solution should be independent of the 
discount rate chosen—any discount rate between zero and 
one should give the same result. Additionally, we add some 
slack to the constraints so that the violations need not be 
entirely eliminated during the first period, but can be 
gradually eliminated over time. Finally, we add ramp rate 
constraints on the generators since there are naturally limits 
to how fast a generator can decelerate. Thus, the DMPC 

problem for agent n at time k0 (
0,n kP ) can be written: 
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System operators should be able to estimate how quickly 
a violation must be eliminated to prevent relay operation. 
This will depend on both the magnitude of the violation, as 
well as the time that the violation has remained on the 
system. To prevent a zone three or time over-current 
operation, the violation will need to be eliminated fairly 
quickly (1-2 seconds). In order to minimize the risk of a 
line sagging and causing a fault, longer time delays 
(seconds to minutes) will likely be acceptable. This 
relationship between time and violation magnitude is 
encoded into the formulation in the constraint multiplier 
functions f1, f2, and f3 in (5c, 5d). In this paper we use four 
period simulations and define f such that agents will seek to 
reduce violations to 130% of the rating in the first period, 
120% in the second, 110% in the third, and 100% in the last 
period. If the violation persists past the original planning 
horizon the agent continues to act to reduce the violation 
below the threshold. The result of each calculation is a 
control plan ∆WK*. This plan is illustrated in fig. 4.  



 
 

 

 
Fig. 4—Diagram of the 2 dimensional decision plan calculated by agent n.   

D. Implementation 

Once an agent has calculated its control plan it takes the 
local portion of this plan (the immediate action to be taken 
locally), implements it locally, takes some additional 
measurements, advances the control horizon, calculates a 
new plan, and acts again. This process differs from standard 
MPC in that the time horizon is reduced after each control 
action, and that the time horizon is finite. In traditional 
MPC, an infinite (or at least large), constantly advancing 
control horizon is used. 

IV. EXPERIMENTAL RESULTS 

In this section we describe the results of numerous 
simulations designed to evaluate this method using standard 
IEEE test networks.  

A. Simulation model description 

For the simulations that follow we use a standard, non-
linear, power flow network model with constant real and 
reactive power loads and constant power, voltage 
generators. The network is assumed to perform frequency 
regulation through a single slack bus (standard power flow 
assumption). We assign load shedding costs of $1000/MW 
to all loads in the system. We assume that the cost of 
reducing generator output is constant for all generators at 
$30/MW. All agents use a four period (K=4) solution 
horizon, but continue to act using a single period (K=1) 
formulation if one or more violations persist after the initial 
control horizon. For each simulation we choose a 
communication neighborhood radius, r. All of the buses that 
can be reached by traveling over no more than r branches 
are within an agent’s neighbor set (M). Within this radius 
we assume that the agent is able to obtain good (zero error) 
measurements constantly. An agent obtains no real-time 
measurements from the buses outside of its neighborhood, 
but can estimate the quantity of load and generation at these 
buses in these areas if needed. We model this estimation 
process using Gaussian noise with 15% coefficient of 
variation (CV). Each simulation begins with a violation 
inducing disturbance. The simulations in this paper are only 
for branch-outage disturbances, though future work will 
include generator outages as well. 

Therefore, the simulation process proceeds as follows: 
1. Choose an IEEE network 
2. Increase the loading so that the network is somewhat 

stressed. 
3. Run an optimal power flow to obtain the initial 

network conditions. 
4. Allow the agents to take noisy measurements from the 

system such that they have estimates of the network 
control variables. 

5. Inject a disturbance (one or more branch outages) that 
causes at least one violation. 

6. Run a power flow to obtain the modified network 
state. 

7. Set k=0, K=4. 
8. Allow the agents to take measurements from their 

local neighborhoods. 
9. Allow the agents to calculate control plans for the 

control horizon (k+1…K), and implement the portion 
for period k+1. 

10. Increment k (and K if k+1>K). 
11. Recalculate the power flow. 
12. Repeat from 8 until all of the violations are 

eliminated, or until it is clear that the agents will not 
be able to eliminate the remaining violations. 

B. Communication requirement computation 

The following experiment was designed to determine 
how much communication is required to obtain good results 
from this method. First, we chose a set of 15 disturbances 
that cause severe branch current violations on a heavily 
loaded IEEE 118 bus network. The disturbances were 
chosen randomly, without regard for the system’s ability to 
control the resulting violations. Second, we chose a 
neighbor radius (r) between 2 and 10 (the diameter of the 
IEEE 118 bus network is 20).  We then simulated the 
system for each disturbance-radius combination. Fig. 5 
shows the control goal for line current violations and the set 
of violation trajectories resulting from the simulations with 
r = 5. 

The results from these simulations demonstrate the 
relationship between network radius and solution error. We 
define control error for a single time step to be the amount 
by which the worst violation exceeds the control goal. 
Therefore, the total control error is the sum of the errors 
over the simulation time horizon. Fig. 6 shows this 
relationship between communication and control error. 

While few of the solutions resulted in zero control error, 
the solutions for agent networks with r≥7 have small 
solution errors even in the worst case. The maximum value 
shown in fig. 6 was a single outlier case. Some additional 
cooperation among the agents could vastly reduce the error 
in this case. Fig. 7 shows the relationship between the 
number of time steps required to effectively eliminate all 
violations and the amount of communication. 
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Fig. 5—Control goal and actual violation trajectories for the set of 15 
simulated disturbance with an r=5 communication radius.  
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Fig. 6—Plot of control error vs. quantity of communication for the 15 
disturbances simulated. Control error is measured by calculating the 
integral over time of the maximum violation. Communication is in terms 
of the radius of an agent’s neighbor set.  
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Fig. 7—Plot showing the relationship between the quantity of agent 
communication and the time required to eliminate violations. 4 is the 
minimum value since the control goal is to eliminate the violations in 4 
control steps. 

V. SUMMARY 

In this paper we show that it is possible to design a 
network of autonomous agents, one at each node of a power 
network, that work locally to eliminate global network 
violations. Initial simulations indicate that this method can 
meet its objective without global knowledge. Implementing 
such a network should make the transmission network more 
robust to unexpected disturbances. Doing so should reduce 
the risk of cascading failures, and has the potential for 
increasing the network’s ability to use existing transmission 
capacity. 

Several outstanding issues and questions remain. This 
method can be improved substantially by adding 
cooperation and learning to the agent capabilities. 
Additionally we hope to characterize the costs, benefits and 
risks of this method in more detail as a means of studying 
what barriers exist to its adoption. One barrier to adoption 
is that this method requires implementation in a fairly large 
portion of the network in order to effectively control 
cascading failures. Such large-scale adoption is unlikely 
without regulatory interventions that provide incentives for 
transmission system operators to upgrade the network. 

REFERENCES 

[1] S. N. Talukdar, J. Apt, M. Ilic, L. B. Lave, and M. G. Morgan, 
“Cascading failures: Survival versus Prevention,” The Electricity 
Journal, Nov. 2003. 

[2] J. B. Rawlings, “Tutorial Overview of Model Predictive Control,” 
IEEE Control Systems Magazine, vol. 20, no. 3. pp. 38-52, 2000. 

[3] E. Camponogara, D. Jia, D., B.H. Krogh and S. Talukdar, 
“Distributed Model Predictive Control,” IEEE Control Systems 
Magazine, vol. 22, no. 1, pp. 44-52, 2002. 

[4] V. Madani, M. Adamiak, and M. Thakur, “Design and 
Implementation of Wide Area Special Protection Schemes,” in Proc. 
57th Annual Texas A&M University Conference for Protective 
Relay Engineers, 2004. 

[5] J. Jung and C. Liu, “Multi-agent technology for vulnerability 
assessment and control,” Proc. Power Engineering Society Summer 
Meeting, 2001, July 2000. 

[6] C. Yanxia, Y. Xianggen, Z. Zhe, C. Deshu, Z. Xiangjun, “Resarch 
on Protective Relaying Systems Based on Multi-Agent Systems,” 
Proc. PowerCon 2002, Oct. 2002. 


