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Abstract—A power system can be thought of as a stochastic 

hybrid system: a Finite State Machine whose states involve 
continuous variables with uncertain dynamics. Transitions in 
this machine correspond to outages of generation and 
transmission equipment. A cascading failure corresponds to a 
series of such transitions whose net effect is a blackout. We 
present evidence that the probability of cascading failures is 
subject to phase transitions—large and abrupt changes that 
result from only small changes in system stress. We suggest a 
network of distributed, autonomous agents to reduce the ill 
effects of cascading failures. These agents improve their 
decisions by cooperating (sharing goals and exchanging 
information with their neighbors). Results from experiments 
on the IEEE 118 bus test case are included. 

I. INTRODUCTION 
OWER systems are described by continuous and discrete 
variables in deterministic and stochastic relations. In 

other words, they are stochastic hybrid systems [1,2,3]. The 
discrete variables include circuit breaker positions and 
transformer tap settings. The continuous variables include 
voltages and currents. The uncertainties accrue from 
modeling deficiencies, hidden failures in protection devices, 
and random disturbances, such as lightning strokes.   

Much has been written about the continuous dynamics of 
power systems [4]. This work focuses on the combination 
of discrete and continuous dynamics. 

A. Goals 
The overall (global) problem of managing a power 

system has many objectives, including the minimization of 
damage to equipment and interruptions of service. Stressful 
operating conditions bring these objectives into conflict. 
Existing practices always resolve these conflicts in favor of 
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the equipment. For instance, the Aug. 14, 2003 blackout 
cost billions of dollars in service interruptions, but caused 
negligible equipment damage [5, 6]. 

The global, multi-objective, power system operating 
problem is tackled by decomposing it into thousands of sub-
problems, and assigning each to a control-agent. Existing 
decompositions are far from perfect: locally correct 
solutions are often globally wrong (the best solutions of the 
sub-problems are not the best solution of the global 
problem). 

We have two goals. First, to allow for better tradeoffs 
among conflicting objectives during cascading failures. And 
second, to find problem decompositions for which local 
correctness implies global correctness in the control of 
cascading failures.  

B. Cascading failures 
A cascading failure is a progression of equipment 

outages, one propagating another. Each outage can be 
thought of as a state transition in a stochastic hybrid system. 
The cascade usually begins with a bizarre disturbance. The 
resulting dynamics produce violations of the operating 
constraints and threaten equipment. The protection system 
acts to remove the threatened equipment from service. 
Further violations occur, precipitating still more equipment 
outages, and so on. 

Bizarre disturbances, though rare, occur frequently 
enough to give the distribution of cascading failures and the 
resulting blackouts a fat tail [7]. 

We seek to shorten cascading failures by eliminating 
constraint violations before they can trigger the protection 
system.  

C. Distributed model predictive control 
The autonomous agents that we have designed use 

distributed model predictive control (DMPC) to accomplish 
this goal. We choose to use distributed agents because they 
can act quickly and are robust to failures. We design the 
agent network by formulating the global control problem 
into an optimization problem and decomposing it into sub-
problems, one for each agent. The agents work on their sub-
problems in parallel, using whatever information they are 
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able to collect locally. In this case, for each agent to make 
globally optimal or even globally feasible decisions it 
would need much more information than it could practically 
collect in real time. It would need to know the state of the 
entire grid and how every other agent will act in response to 
that state. To compensate for this information problem, we 
design the agents to use model predictive control (MPC) to 
solve their local problems. 

Model predictive control is a repetitive procedure that 
combines the advantages of long-term planning (feed-
forward control based on performance predictions over an 
extended horizon) with the advantages of reactive control 
(feedback using measurements of actual performance). At 
the beginning of each repetition, the state of the system to 
be controlled is measured. A time-horizon, stretching into 
the future, is divided into intervals. Models are adopted to 
predict the effects of control actions on system-states in 
these intervals. The predictions are used to plan optimal 
actions for each interval, but only the actions for the first 
interval are implemented. When this interval ends, the 
procedure is repeated. Ref. [8] provides an overview of 
MPC theory and practice for centralized applications.  

MPC, because it uses optimization for making decisions, 
readily accommodates large numbers of complex 
constraints. Many other control techniques do not allow 
inequality constraints. Instead, they require the designer to 
approximate the effects of constraints with conservative 
assumptions.  

The adaptation of MPC to distributed agents results in a 
two dimensional decomposition of the global problem. The 
MPC procedure is a temporal decomposition, and the 
distribution of the problem to autonomous agents is a 
spatial decomposition. The agent models decrease in 
fidelity with distance in both dimensions, resulting in the 
agent being able to make good decisions for the here and 
how and approximate predictions for more distant actions. 
DMPC is described in detail in Ref. [9]. 

D. Agent cooperation 
If designed correctly, agents that cooperate will achieve 

solutions that are better, or at least no worse, than agents 
that act unilaterally. We define cooperation as exchanging 
useful information and sharing commensurate goals. We 
have found that enabling agents to cooperate allows for 
vastly improved decision making. This result is similar to 
that found by Talukdar and Camponogara [10], although the 
algorithm used for this application differs somewhat.  

II. MEASURING THE RISK OF A CASCADING FAILURE 
The outage of a component, such as a transmission line 

or generator, is a discrete event that suddenly changes a 
network’s configuration. The dynamic response of the 
network to such changes can over-stress some of its 

remaining components. Thousands of relays spread 
throughout power networks, seek to prevent over-stresses 
from lasting long enough to cause harm. 

C(S), a cascading failure of length L and size |S|, can be 
thought of as an alternating sequence of equipment-outages 
and threshold-crossings:  

C(S) = {E0, T0, E1, T1, …, EL, TL} (1)  
where:  
E0 is a set of one or more outages that initiated the cascade. 

E0 is typically a multiple-contingency event. 
Tn is the n-th set of threshold-crossings (constraint 

violations) in the sequence. 
En is the n-th set of equipment-outages in the sequence.  
TL is the only empty set in the sequence, and signals its end. 
S = E0 ∨ E1 ∨ …∨ EL is the set of all the components lost 

during the cascade. 
There are two principal difficulties in accurately 

predicting C(S), given E0: 
• Complexity: The relays in power networks set 

thresholds on several types of variables, including 
impedance, voltage, current, and frequency. The more 
detailed models for calculating the dynamics of these 
variables require large computational and data-
gathering efforts. 

• Uncertainty: The responses of power networks to 
sudden changes are profoundly uncertain. Unknown 
load dynamics, imprecise parameter values, and hidden 
failures are among the reasons.  

We will use a probability based measure to asses the 
severity of cascading failures. Consider the probability, 
P(y), of a cascading failure, where: 

P(y) = Probability [ C (|S| > y) |  E0 ∧ H  ∧ x ] (2) 
where H is a set of hidden failures and x is a measure of 
network-stress such as average line-loading. In words, P(y) 
is the probability that a random set of outages, E0, will 
produce a cascading failure of size y or greater, given the 
current state of the system (H and x). 

For the purposes of this work, a phase transition occurs 
when a small change in the stress on the network produces a 
large and abrupt change in P(y). 

In [11], experiments based on DC power flow model are 
conducted on two types of networks: a regular, square, 
50x50 grid, and a simplified model of a 3357-node power 
network. Both networks demonstrate distinct phase 
transitions in P(y). Experimental results for the 3357-node 
power network are shown in Fig. 1. 

Given that phase transitions occur in simulated networks, 
we conjecture that the probability of a cascading failure in 
actual power networks, given a multiple contingency, is 
similarly subject to phase transitions. If this conjecture is 
true, it may be possible to develop on-line techniques for 
assessing the risk of cascading failures.  
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Fig. 1—P(20), the conditional probability of cascading failures of size 20 
or greater, plotted against x, the base load multiplier, for a 3357-node 
network. xc marks the critical point at the beginning of a phase transition. 

III. CONTROLLING CASCADING FAILURES 
The global control problem that we use to control 

cascading failures is: 
• to eliminate network violations before the protection 

system operates (causes a state transition) at minimum 
social cost.  

This problem can be formulated as a non-linear 
programming problem using steady-state power network 
equations. We define this problem using the notation below. 
Let: 
N be the index set of all the nodes in the network. 
n be the index of the agent located at bus n. 
Q be the index set of all the branches in the network. 
V be a complex vector of node voltages.  Vnk is the 

voltage at bus n at time step k. 
I be a complex vector of node current injections. In is 

the injection at bus n. 
G be a complex vector of generation power injections.  

For the sake of notational simplicity, we assume no 
more than one generator is located at each bus. It is 
fairly easy to incorporate multiple generators or 
loads, but doing so complicates the notation 
somewhat.  

L be a complex vector of load powers.  As above, we 
assume one load at each bus. 

YNN be the complex node admittance matrix for all the 
nodes in the network. 

YQ be the complex branch admittance matrix for the set 
of all branches in the network. 

ynm be the single element of the node admittance matrix 
that is the admittance between buses n and m.  

Since many cascading failures are propagated by 
under/over-voltage violations at buses and over-current 
violations on transmission lines, we include these 
constraints in our formulation. These are not the only 
violations that can trigger protection system actions, but are 

a useful starting point for our design. The decision space is 
any combination of load and generation shedding. We 
assume that both load and generation can be shed in 
continuous quantities. The objective function is the total 
social cost of the control actions. Therefore the global, 
single period control problem can be written as follows.  

( )0 0,
minimize ,n n n n nG L n N

Cost G G L L
∈

− −∑       (3a) 

subject to: 

NNI Y V=                  (3b) 

 ( ),n n n nG L V conj I n N− = ∈          (3c) 

 ( ) ( )0 0Re Im ,n n n nL L L L n N= ∈        (3d) 

 min max ,n n nG G G n N≤ ≤ ∈           (3e) 

00 ,n nL L n N≤ ≤ ∈              (3f) 

 
min maxV V V≤ ≤              (3g) 

max( ) , , ,nm nm n m nmI y V V I n m N n m= − ≤ ∈ ≠  (3h) 
The costs associated with shedding load (from 3a) are the 

social costs that would be incurred from the interruption of 
electrical service. If some loads are deemed more important 
to the system than others, these varied costs can be 
incorporated into (3a). The costs associated with reducing 
generation (also in 3a) come either from the potential 
equipment damage that rapid deceleration could cause, or 
the amount that would have to be paid to an independent 
power producer for such emergency control. Equality 
constraint (3b) defines the voltage-current relationships in 
the network. Equality constraint (3c) expresses conservation 
of energy at each node. Equality constraint (3d) forces the 
system to shed real and reactive load in equal proportions. 
Inequality constraints (3e) and (3f) describe the extent to 
which loads and generation can be adjusted. The final 
inequality constraints (3g and 3h) define the measures used 
to identify violations (bus voltage, and line currents), as 
well as the limits on those measures. This formulation can 
be extended to include constraints on the dynamic system, 
such as frequency or generator “out-of-phase” limits, but 
such extensions are beyond the scope of this paper.  

Simulations using IEEE test networks indicate that 
voltage and current violations can be eliminated by solving 
this problem and implementing the resulting control actions. 

A. Decomposition 
As discussed in the introduction we solve the global 

problem (3) by decomposing it in two dimensions. First, we 
decompose the problem in space by placing an agent with 
local control abilities at each bus in the network. Second, 
we decompose the problem in time using MPC. 

During normal operation an agent collects measurements 
from its neighborhood and waits for network violation. 
Operators control the grid using standard procedures. 
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Occasionally (perhaps daily or weekly) the agent will 
collect data from more remote agents in order to maintain a 
rough model of more remote portions of the network.  
When the agent finds a violation it immediately calculates 
an adjustment to its local control variables using its local 
DMPC problem and the network information that it has 
collected. It then adjusts its local control variables by 
shedding load or generation and monitors the effect on the 
violation. After a short time delay it repeats this procedure 
until the violation is eliminated. Fig. 2 gives a high level 
view of the system design.  
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Fig. 2—Feedback diagram of the system showing how the agent network 
and operators interact. Under normal circumstances agents make no 
adjustments to operator set points. If a violation occurs, agents work 
together to eliminate the violations by adjusting control set points.  

B. DMPC formulation 
To find good solutions to the global problem (3), the 

agents must solve local MPC problems that preserve the 
important relationships of (3), and are relatively insensitive 
to remote measurement errors. We have found that linear-
difference approximations of the global formulation can 
achieve this property. In some applications, a Taylor series 
expansion of the global problem could work well, but for 
non-linear problems calculating the complete gradients can 
require more data than an agent is able to collect. To work 
around this problem we build a linear-difference 
formulation using standard DC load flow approximations. 

The resulting sub-problem for agent n is therefore: 

0
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K
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e cρ−
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δ δ
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k k

u δ
=
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where: 
M is the index set of all nodes (or control variables) 

that agent n includes in it sub-problem. M N⊂  
K is the final time step in the control time horizon. 
k is the current time period.  
u is a vector of control variables. 
δ is a vector of control variable adjustments such that 

δk=uk-uk-1. 
∆M,K is the full plan for all control variables (M) and time 

periods (K) in agent n’s sub-problem. 
c is a vector of costs associated with control variable 

reductions. 
ρ is the discount factor used in the MPC cost 

function. 
xM,k is a vector of state variables in agent n’s problem. 

xM,k indicate violations that could trigger a 
cascading failure when outside of known bounds 
(xmin, xmax).  

f1, f2 are slack functions that allow the agent to eliminate 
the known violations iteratively over time instead of 
all at once.  

D is a matrix of state variable sensitivity factors. 
The output of an agent’s problem is a control plan for 

every control variable in M and for the entire time horizon 
(K time steps). The plan includes an action to take locally 
and immediately, as well as estimates of what the local 
agent will do in the future. The plan also includes estimates 
of what other agents will do both now and in the future. 
During each iteration the plan is updated and the control 
horizon reduced. For example, if each period is 2 seconds 
long, the plan might be 10 sec. long during the first period, 
8 sec. long during the second period, 6 sec. during the third, 
etc. A typical control plan is illustrated in Fig. 3. 

 

 
Fig. 3—Diagram of the 2 dimensional control plan calculated by agent n.   

C. Cooperation 
We have found that, if properly designed, cooperative 

agents can vastly outperform agents acting unilaterally. 
Cooperation can take a variety of forms. According to our 
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earlier definition of cooperation as sharing goals and 
exchanging useful information, an agent that merely solves 
(4) and acts locally is only partially cooperative. Such an 
agent uses an overlapping objective function (4a) but does 
not exchange useful information with its neighbors before 
taking action. In order to improve performance we have 
studied a variety of designs for cooperative agents.  

The algorithm presented in this paper is based on our 
finding that agents with only local information can overlook 
important data located just outside the agent’s local area. 
Consider two agents: A and B. A is near a violation that B 
should react to, but B is unaware of the problem because 
the problem lies just outside of B’s neighborhood (but not 
A’s). If A solves its local problem, calculates that B should 
act, and then shares the important violation data with B, B 
will likely be able to make better decisions about its local 
control actions. If B replies and shares its local data with A, 
A may also be able to improve its solution. 

With this design in mind the following is a cooperative 
control algorithm for agent n. During normal operation the 
agent gathers local data and exchanges information with 
other agents. If the agent becomes aware of a violation the 
agent follows the following procedure: 
1. Solve (4) to obtain the control vector for the time period 

k0 (δM,k0).  
2. Determine a set of agents (Q) that appear to require 

control action.  
3. Compare solutions with those agents in set Q.  
4. If a large discrepancy is found, exchange data with the 

agents with whom there exists a discrepancy. This 
results in agent n enlarging its problem boundary (M). 

5. Re-solve (4) with the updated data. 
6. Iterate from 2 until consensus is reached, or until a 

maximum number of iterations has occurred. 
This rather simple cooperation algorithm was found to be 
quite effective. Each agent may begin with severely limited 
information but through the cooperation process the 
relevant agents obtain more detailed information about 
important aspects of the network. In our simulations we 
have found that agents reach consensus within one or two 
iterations. We limit this process to three iterations. 

D. Results 
We tested this method with and without cooperation 

using simulations on standard IEEE test systems. We 
assume that the network acts according to a standard, non-
linear, power flow model with constant real/reactive power 
loads and constant power/voltage generators. The network 
is assumed to perform frequency regulation through a single 
slack bus. Control variable reduction costs of $1000/MW 
and $30/MW are assigned to loads and generators 
respectively. All agents use a four period (K=4) time 
horizon, but continue to act using a single period (K=1) 

formulation if one or more violations persist after the initial 
control horizon. For each simulation we choose a 
communication neighborhood radius, r. All of the buses that 
can be reached by traveling over no more than r branches 
are within an agent’s neighbor set. Within this radius we 
assume that the agent is able to obtain perfect measurements 
constantly. An agent obtains no real-time measurements 
from the buses outside of its neighborhood, but can estimate 
the quantity of load and generation if needed. We model the 
effects of this estimation process using Gaussian noise with 
15% coefficient of variation (CV). Each simulation begins 
with a violation inducing disturbance. The simulations in 
this paper are for branch-outage disturbances only. 

Therefore, the simulation process proceeds as follows: 
1. Choose a network and initial conditions. 
2. Allow the agents to take noisy measurements such that 

they have estimates of the network control variables. 
3. Inject a disturbance (one or more branch outages) that 

causes at least one violation. 
4. Run a power flow to obtain the modified network state. 
5. Set k=0, K=4. 
6. Allow the agents to take measurements from their local 

neighborhoods. 
7. Allow the agents to calculate control plans for the 

control horizon (k+1…K), and implement the portion 
for period k+1. 

8. Increment k (and K if k+1>K). 
9. Recalculate the power flow. 
10. Repeat from 6 until all violations are eliminated, or 

until it is clear that the agents are unable to eliminate 
the remaining violations. 

Fig. 4 shows typical simulated control trajectories for a 
violation on the IEEE 118 bus system. The control goal (as 
defined by f1 and f2) is indicated along with the resulting 
violation trajectories. The cooperative agents outperform 
agents acting unilaterally by a large margin. 
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Fig. 4—Control trajectories for agents acting cooperatively and agents 
acting independently. This shows the results of an experiment on the IEEE 
bus with an outage on line 97. The communication radius (r) is two for 
both cases. 



 
 

 

In order to determine an appropriate agent 
communication radius we performed a series of simulations 
with 15 severe disturbances and a range of communication 
radii (r=2 to r=10). This allowed us to us to compare 
solution quality and quantity of communication. The results 
of these experiments are shown in Fig. 5.  
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Fig. 5—Plot of control error vs. quantity of communication for the 15 
disturbances simulated. Control error is measured by calculating the 
amount by which the action violation trajectory exceeds the control goal. 
Communication is in terms of the radius of an agent’s neighbor set. The 
above graph shows the relationship for agents acting independently. 

IV. SUMMARY 

Cascading failures can be thought of as state transition 
sequences in a stochastic hybrid system. For power 
networks, we have found evidence that the probability of a 
cascading failure increases sharply as loading increases past 
a critical point. We conjecture that such phase transitions 
occur along other trajectories as well. We propose 
controlling cascading failures by eliminating network 
violations before they trigger state transitions. We 
demonstrate that cooperative autonomous agents using 
Model Predictive Control can accomplish this goal without 
global knowledge. We also show that agent performance 
can be substantially enhanced through the use of 
cooperation. 

The methods that we present here are in the early stages 
of development and therefore leave substantial room for 
improvement. Using our current methods, estimating the 
probability of a cascading failure requires thousands of 
simulations. We hope that improvements in this method will 
result in tools that are practical for real-time use. Agent 
performance can likely be improved by using a network 
model that approximates the system dynamics more closely. 
Additionally we expect that agent performance can be 
enhanced through the use of learning and additional forms 
of cooperation. Finally we hope to study some of the 
institutional barriers that grid control technologies must 
overcome in order to achieve more widespread adoption in 

restructured electricity systems. 
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