
 
 

 

  

Abstract—Most large blackouts are caused by cascading 
failures—sequences of equipment outages, one set of outages 
precipitating another. We study the application of distributed, 
autonomous agents for shortening such sequences. Each agent 
controls a single variable—the consumption of a load or the 
output of a generator. Each agent uses model predictive control 
and cooperates with its neighbors in making its decisions. 
Experiments using the IEEE 118 bus test case illustrate the 
effectiveness of this method. 

I. INTRODUCTION 
N model predictive control (MPC) strategies, a control 
agent solves an optimal control problem over a finite time 

horizon and applies the first control action from the optimal 
solution. At the next control step, the agent updates the state 
based on feedback information from sensors and re-solves 
the optimal control problem [6,7]. A model incorporated as a 
set of constraints in the optimization problem predicts the 
system’s response. MPC is used extensively to control large-
scale manufacturing processes, particularly in the chemical 
industry [8,9]. The principal reasons for the success of MPC 
are that operating and control constraints are accommodated 
directly by incorporating them explicitly into the MPC 
optimization problem and that the optimization objective 
function can reflect real operating objectives, particularly 
economic factors. The principal drawbacks of MPC are that 
the solutions at each step are open-loop meaning that 
auxiliary conditions need to be satisfied to guarantee 
stability; and that computations may be too intense to close 
high-rate feedback loops.  

For large-scale applications, distributed MPC has been 
proposed to reduce the amount of communication and 
computation that would be required to implement a 
centralized MPC algorithm [1-3]. Distributed 
implementations may also be more robust than centralized 
MPC, and in some applications certain restrictions on 
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information flow may prohibit the implementation of a 
centralized controller. Different cooperation strategies have 
been proposed to guarantee feasibility and stability [3-5]. 
For example, to provide some information about anticipated 
effects of interactions between subsystems, the distributed 
control agents may exchange predicted state trajectories 
[3-4] or sets of possible reachable states [5]. In the 
distributed MPC scheme studied in this paper, control agents 
take into account their influences on neighboring 
subsystems and anticipate the reactions of neighboring 
control agents by incorporating their neighbors’ dynamics 
and objectives into local MPC problems. The agents' 
decisions might be different from those anticipated by their 
neighbors because the agents have different models. Each 
agent uses a local model of the system representing its 
control area in detail, but uses simplified models of the other 
control areas. The control agents cooperate to reduce the 
effects of these differences by exchanging solutions to their 
local problems with their neighbors. 

MPC has been applied to a variety of power system 
problems [4,15,16]. This paper presents a new application of 
distributed MPC methods to the problem of arresting 
cascading failures in a power system. A cascading failure is 
typically caused by an initiating disturbance that results in 
unusual violations of normal limits on voltages, currents, 
and frequency. When these limit violations persist, 
protection systems react to de-energize the equipment 
threatened by the violation. This can result in subsequent 
limit violations elsewhere in the system and additional 
protection system actions. Thus, the initial disturbance 
initiates a sequence of abrupt transitions in the system’s 
topology that make up the cascading failure. A blackout, 
that is, a large-scale interruption of demand, is a byproduct 
of such sequences of protective relay actions.  

MPC control strategies may be effective against cascading 
failures. For the cascading failure problem, the goal is to 
shed small amounts of load and generation judiciously, 
thereby alleviating operating-limit violations before 
protection systems take actions that make the problem 
worse. In most cascading failures, there is a substantial time 
lag between the initiating disturbance and the first set of 
relay actions. In the 2 July 1996 event in the western US, 
after a series of four bizarre relay operations occurred in a 
period of about 1.5 sec, the system remained in a stressed 
condition for more than 20 sec before the final sequence of 
protection system actions commenced [10]. The Northeast 
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American blackout of 14 August 2003 progressed 
substantially slower: the sequence of cascading events took 
more than one hour to complete [11]. Although it would 
have been very difficult for operators to react to control the 
WSCC cascading failure, 20 seconds should be sufficient 
time for a distributed MPC algorithm to operate. 

This paper is organized as follows. Section 2 formulates 
the optimization problems to be solved by a set of 
autonomous agents and introduces the mechanisms by which 
the agents cooperate in solving their problems. Section 3 
presents results of several simulation studies resulting from 
the application of this method to the cascading failure 
problem. These simulations illustrate the potential for 
avoiding cascading failures using distributed MPC and also 
illustrate some advantages of cooperation. The concluding 
section summarizes the work in this paper and describes 
directions for future research. 

II. THE PROBLEM 
We wish to prevent equipment outages by eliminating 

operating-constraint violations before the protection system 
acts. Think of the process as a sequence of MPC problems, 
each of the form: given the present state of the system 
(including some constraint violations), and a deadline, 
develop a plan (the amounts of load and generation to be 
shed over a horizon extending from now to the deadline) to 
eliminate the violations before the deadline expires, and at 
minimum social cost. This problem can be formulated as a 
non-linear programming problem, using the steady state 
power network equations from an optimal power flow [12]. 
Let: 

t0, t1, ..,tK be discrete points in time, t0 being the 
present time, and tK being the deadline; 

Uk  be the value, at time tk, of the network’s 
continuous control variables; 

Xk  be the value, at time tk, of the network’s 
continuous state variables; 

µ be a next-state-predictor, such that Xk+1 = 
µ(Uk, Xk); 

G(UK, XK) < 0 be the constraints to be met by the 
deadline in order to prevent a cascading 
outage, tK; 

H(Uk, Xk) < 0 be a set of constraints that must be met at 
each time period due to the physical 
limits of the system. 
C(U0,U1,.., UK)  be the cost of the 
succession of control changes from U0 to 
U1 to… to UK.  

Then, each of the sequence of MPC problems has the form: 

(OP): Minimize  C(U0,U1,.., UK) 
U0,..,UK 

Subject to  Xk+1 = µ(Uk, Xk);     k = 0,1,…,K-1 
      G(UK, XK) < 0 
     H(Uk, Xk) < 0;         k = 0,1,…,K 

Note that in this formulation, the value of X0 is measured, 

the value of U0 is to be calculated, and all the other X’s and 
U’s are predicted to take the long-term effects of U0 into 
account.  

A. Problem decomposition 
Suppose there are N autonomous agents placed so there is 

an agent at each generator and load. The goals of this section 
are to decompose the overall problem (OP) into sub-
problems (SPOn) such that: a) each sub-problem can be 
assigned to an autonomous agent; b) each sub-problem is 
easier to solve than the overall problem; and c) the optimal 
solutions of the sub-problems constitute an optimal solution 
of the overall problem. 

We seek to achieve these goals by: i) breaking the control 
vector into N disjoint parts; ii) making agent-n responsible 
for calculating only one of these parts; iii) allowing agent-n 
to assume that the other agents will calculate their parts 
optimally; and iv) using simplified models to predict the 
responses of those distant parts of the network that are 
relatively insensitive to agent-n’s decisions. Consider agent-
n. Let:  
Znk be the subset of Uk, such that Uk = [Z1k, Z2k,.., ZNk], 

and Znk is assigned to agent-n  
Ynk be the part of Uk that is not assigned to agent-n. 

Thus Uk = [Znk, Ynk] and Ynk = [Z1k, …,Zn-1k, Zn+1k, 
…, ZNk], for all n. 

If agent-n acts independently, without communicating with 
the other agents, the sub-problem it must solve is: 
 

(SPn):  Predict what the other agents will do and how the 
network will respond, that is, predict Yn0,…,YnN 
and X1, X2,..,XK. Simultaneously, solve the 
optimization problem: 

  
Minimize     C(U0,U1,.., UK)                             
Zn0,..,ZnK 
Subject to    G(UK, XK) < 0 

H(Uk, Xk) < 0;         k = 0,1,…,K 
 

Assuming that the other agents act optimally with respect to 
agent-n’s problem, this problem can be rewritten as follows. 
 

(SPOnk): Minimize   C(U0,U1,.., UK)                             
  {Znk, Ynk}0 ≤ k ≤ K 

Subject to     x’njk+1 = Mnjk(Uk, Xk);    
    j = 1,2,..,J;   k = 0,1,..,K-1  
G(UK, XK) < 0 
H(Uk, Xk) < 0;         k = 0,1,…,K 

where: 
xnjk is the state of the network at time, tk, in 

region, Rnj. In other words, the state of the 
entire network at time, tk, is given by:  Xk = 
{xnjk}0≤ j ≤ J 

Rn0, Rn1,…,RnJ  are concentric and disjoint regions of the 
network, such that Rn0 is centered on agent-
n, and Rnj is closer to agent-n than Rnj+1 

Mnjk is a network-model such that  xnjk+1 = 
Mnjk(Uk, Xk) 



 
 

 

 
Agent-n predicts future states of the network with the aid 

of models, Mnjk, that are centered at its location. The models 
are specific to the agent; they decrease in fidelity with both 
distance and time. In other words, each agent has its own 
suite of models; distant parts of the network are less 
accurately represented, as are time intervals towards the end 
of the time-horizon. 

There is a tradeoff between the quality of the decisions 
agent-n makes and the effort it expends on state and control 
variable predictions. The more accurate the predictions, of 
the more nearly the solutions to {SPOn} will approach the 
optimal solution of (OP). On the other hand, we assume that 
the cruder the predictions, the less the effort needed to make 
them. 

Notice that agent-n solves the overall problem, but 
conditioned on the unique and simplified view of the 
network provided by its suite of models, {Mnjk}. (SPOnk) is 
simpler than (OP) because {Mnjk} is simpler than µ, 
especially for parts of the network that are far from agent-n. 
Of course, even though agent-n predicts the entire control 
vector, it implements only the part assigned to it, and only 
for the first time-interval.  

B. Cooperation 
Each agent can sense only a small part of the network; 

without help from its neighbors, it cannot be expected to 
obtain an accurate picture of what is happening in the entire 
network. We will say that two agents cooperate if they share 
goals (objectives or constraints) and exchange information 
to better meet these goals. 

Two obvious forms of cooperation are: a) for agents to 
tell their neighbors what they intend to do; and b) to pass 
along measurements that other agents may not be able to 
make. 

These two forms of cooperation require the agents to 
communicate with their neighbors. But, given a suitable 
cooperation scheme, their optimization tasks become easier 
because they can use the predicted results in their problems 
and decide only on local. Specifically, the task for agent-n 
becomes: 

 

(SPCnk): Minimize C(U’0, U’1,.., U’K) 
   {Znk}0 ≤ k ≤ K 
 Subject to  x’njk+1 = Mnjk(U’k, X’k);    

      j = 1,2,..,J;   k = 1,2,3,..,K-1 
G(UK, XK) < 0 
H(Uk, Xk) < 0;   k = 0,1,…,K 

 

where U’k and X’k are synthesized from agent-n’s own 
calculations and measurements as well as those supplied by 
its neighbors. A significant portion of U’0 and X’0 can be 
measured explicitly, and provides the feedback mechanism 
for each time period. SPCnk differs from SPOnk in that an 
agent only needs to optimize with respect to its local control 
variables—other variables are obtained through prediction 
and cooperation. In our actual implementation the agents 

perform this prediction as a by-product of the optimization 
process. 

There are many different ways of making these syntheses. 
As yet, we have tried only a few and will need to do much 
more work in order to find the best ones. 

C. Application to the cascading failure problem 
This section briefly describes how we apply the above 

general formulations to the cascading failure problem. For 
additional details see [14].  

The overall problem is adapted from a standard optimal 
power flow formulation [12]. The primary differences are 
that the cost function is the cost of load and generation 
shedding rather than generator fuel or bid costs and demand 
schedules. 

For the decomposed problem, agent-n divides the network 
into four regions, Rn0-Rn3. Rn0 contains the local node (bus n) 
where agent-n has direct control and measurement abilities. 
Rn1, called the local neighborhood, is the sub-network of 
radius r1 around bus n. Agent-n obtains constant 
measurements from buses within Rn1 such that it maintains 
good models of this region. Rn2, named the extended 
neighborhood, extends to every bus within a radius of r2 
from bus n. We assume that r1 and r2 are specified 
exogenously, and are uniform across all agents. In the 
extended neighborhood, the agent obtains infrequent (daily 
or weekly) measurements such that it can estimate the 
quantity of load and generation at these locations. This 
provides agent-n with crude approximations of the control 
abilities of agents at these remote locations. The remainder 
of the network falls into Rn3. Agent-n does not take any 
measurements or estimates of the state or control variables 
in Rn3. However, it estimates the configuration of the Rn3 
network by assuming that the remote branches are in some 
default state. 

The sub-problem for agent-n at time t0 is given in (2.1) 
below. In this formulation the agent is seeking to eliminate 
known branch current violations before the end of the time 
horizon (tK). 
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where: 
M is the index set of all control variables that the 

agent includes in its problem. This includes only 
the control variables in Rn0 , Rn1 , and Rn2; 

δMk is the vector of predicted/calculated control 



 
 

 

variables changes for time tk; 
c is a vector of costs associated with load and 

generation reductions (we assume that generation 
cannot be increased in the time frames required for 
this problem); 

ρ is a discount factor such that 0< ρ<1; 
B is the set of all branches (transmission lines) for 

which the agent has current measurements. B 
includes all of the branches in Rn0, and Rn1, and 
those branches in Rn2 for which the agent has data 
from the cooperation process; 

IBk is a sub-vector of the full vector of complex branch 
currents (I) corresponding to the branches in set B; 

DBM is a portion of the branch current distribution factor 
matrix calculated using the DC load flow 
approximations; 

uM0 is the vector of measured or estimated control 
variable set points at time t0. 

fk is a scalar that specifies the proportion of the 
violation to be reduced during each time step.  In 
our simulations we assign f1,2,3,4=[1.3, 1.2, 1.1, 1.0] 
(see the “control goal” in fig. 3.1); 

G,g represent the set of all generator locations in the 
control vector and an index into that set; 

RRg is the ramp rate for generator g: i.e. the amount by 
which the generator can be reduced between time 
steps. 

Equation (2.1b) gives the combined state variable (branch 
current) prediction and limits for each time period (tk). This 
constraint includes a scaling function f that adds some slack 
to the constraints so that the violations need not be entirely 
eliminated during the first period, but can be eliminated 
gradually over the time horizon. We also add ramp rate 
constraints on the generators (2.1d) since there are natural 
limits to how fast a generator can decelerate, and constraints 
(2.1e) to ensure that the agent does not enact or predict more 
load or generation shedding than that which is feasible. 

According to our earlier definition of cooperation as 
sharing goals and exchanging useful information, an agent 
that merely solves (2.1) and acts is not cooperative. Such an 
agent uses an overlapping objective function (2.1) but does 
not exchange useful information with its neighbors before 
taking action. The algorithm used in this study is based on 
our finding that agents with only local information can 
overlook important data located just outside the agent’s local 
neighborhood (Rn1). Consider two agents: agent-n and agent-
m. Agent-n is near a violation that agent-m should react to, 
but agent-m is unaware of the problem because it lies just 
outside of agent-m’s neighborhood (but not agent-n’s). If 
agent-n solves its problem and calculates that agent-m 
should act, and then shares the important violation data with 
agent-m, agent-m will likely be able to make better decisions 
about its local control actions. If agent-m replies and shares 
its local data with agent-n, agent-n may also be able to 
improve its solution. Each agent may begin with severely 

limited information but through the cooperation process the 
relevant agents obtain more detailed information about 
important aspects of the network.  

More specifically after each solution of (2.1), agent-n 
obtains an estimated control vector for time t1 (δM1). The 
vast majority of this vector will be zero, therefore it chooses 
a subset of M (Q) representing the control variables that 
appear to require changes. Actually, the vast majority of the 
time an agent will see no violations and therefore the 
apparent optimal control vector will be zero (δM1 = 0), 
resulting in Q being equal to the empty set. If Q is non-
empty, agent-n sends a message to its neighbors responsible 
for the control variables in set Q (let P represent this set) and 
exchanges relevant state, control, and configuration variable 
measurements. Thus the accuracy of the network models 
used by agent-n and the agents in set P, increase as they 
replace estimates with actual measurements. We allow this 
process to repeat no more than three times. 

III. SIMULATION RESULTS 
In this section we describe the results of simulations 

designed to evaluate this method. The following 
experiments are specifically designed to determine the 
relationship between agent performance and communication 
abilities. These results apply to simulations of the IEEE 118 
bus test case [17]. Similar results have been obtained using 
other networks. The 118 bus case was modified slightly 
from the original to match its properties to those of a typical, 
contemporary power system. 

A. Simulation model description 
We model the network using a standard AC power flow 

network model with constant real/reactive power loads and 
constant power/voltage generators. The network is assumed 
to perform frequency regulation through a single slack bus. 
The initial condition of the network is calculated with an 
optimal power flow algorithm [12]. One agent is placed at 
each bus and has the capabilities specified in Sect. II. Table 
3.1 summarizes the important model input parameters and 
assumptions. 

TABLE  3.1—VERIFICATION MODEL INPUT PARAMETERS 
Input Description 

Load shedding costs Randomly assigned between $500/MW 
and $1500/MW 

Generator shedding costs Assigned uniformly at $30/MW 

Solution horizon (K) 4 time steps 

External neighborhood 
radius (re) 

10 branches 

Local neighborhood 
radius (rl) 

Varies between 1 and 6 branches 

External (R2) data 
estimation error 

15% coefficient of variation (σx/x) 

Initiating disturbances Chosen randomly from a set of 100 
violation inducing double branch outages 



 
 

 

A simulation is initiated by choosing a disturbance, a 
local neighborhood radius (rl), and allowing agents to 
sample data from the pre-fault condition of their external 
networks. During each simulation time step the agents solve 
their local problems and implement the required local 
control actions. After the agents complete their calculations, 
the simulation calculates the affect of agent control actions 
using an AC power flow. For every disturbance/radius 
combination this procedure was repeated for both 
cooperative agents and unilateral agents. 

To prevent a zone-three impedance or a time over-current 
relay operation, a violation must be eliminated fairly quickly 
(1-2 seconds). In order to minimize the risk of a line sagging 
and causing a fault, longer time delays (seconds to minutes) 
will likely be acceptable. In this study we use four-period 
simulations and define f such that agents seek to reduce 
current magnitude violations linearly from 130% of the limit 
in the first period to 100% in the final period (see the 
“control goal” in fig. 3.1). If a violation persists past the 
original planning horizon, the agent continues to act to 
reduce the violation below the threshold.  

B. Results 
Figures 3.1-3.3 summarize results from 771 simulations 

using the above procedure and sampled using the 
assumptions in table 3.1. Additional details about these 
results and the associated simulations are given in [14]. 

Each simulation is repeated for agents with and without 
cooperation. Figure 3.1 shows the trajectory of the most 
severe violation resulting from a typical disturbance for both 
cooperative and unilateral agents. Figures 3.2 and 3.3 show 
the relationships between the quantity of communication 
(internal neighborhood size) and two measures of 
performance: control error and completion time. The control 
error is the area of the space between the control goal and 
the actual trajectory (see fig. 3.1). For the cooperative agents 
this area is quite small relative to the average for the 
unilateral agents. The completion time is the number of time 
iterations required to reduce the violation to no more than 
5% above the constraint. For the cooperative case, the 
completion time is 4, whereas the non-cooperative agents do 
not eliminate the violations within the time horizon. 
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Figure 3.1—A typical violation trajectory resulting from a single 
simulation. 
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Figure 3.2—The relationship between local neighborhood size (r1) and 
control error. 
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Figure 3.3—The relationship between local neighborhood size (r1) and 
completion time. On average the cooperative agents require one additional 
time step to remove their violations, independent of the local neighborhood 
size.  

IV. CONCLUSIONS 
This paper presents a distributed MPC strategy for 

alleviating operating conditions in power systems that could 
lead to cascading failures. Experiments suggest that the 
strategy is effective so long as the time between MPC 
iterations is sufficiently large that the network nearly arrives 
at a steady state before the next control action occurs. If the 
generator actions can be accomplished quickly, this 



 
 

 

condition should hold. Tests using a dynamic power system 
simulator may provide additional insights. The experiments 
also demonstrate the value of even simple cooperation 
schemes in agent networks. Without cooperation, the 
communication required to obtain acceptable performance 
may be beyond what can be expected from existing 
technology.  

We are currently investigating a number of more 
elaborate cooperation schemes.  
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