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Abstract—We derive a measure of “electrical centrality” for 

AC power networks, which describes the structure of the 
network as a function of its electrical topology rather than its 
physical topology. We compare our centrality measure to 
conventional measures of network structure using the IEEE 300-
bus network. We find that when measured electrically, power 
networks appear to have a scale-free network structure. Thus, 
unlike previous studies of the structure of power grids, we find 
that power networks have a number of highly-connected “hub” 
buses. This result, and the structure of power networks in 
general, is likely to have important implications for the reliability 
and security of power networks. 
 

Index Terms—Scale-Free Networks, Connectivity, Cascading 
Failures, Network Structure 

I.  INTRODUCTION 
N bulk electric power networks, wide-scale cascading 
failures happen more often than would be expected if 

failures were random and independent, and their sizes 
followed a normal distribution [1]. Despite reliability 
standards and significant technological advances, the 
frequency of large blackouts in the United States has not 
decreased since the creation of NERC in 1965 [2]. The US 
blackout of August 2003, along with the Italian blackout of 
September 2003, convinced even skeptics that fundamental 
weaknesses exist in transmission infrastructures. Many have 
sought to explain this weakness as a function of a shift in 
electricity industry structure from regulated, vertically 
integrated utilities with moderate interregional trade, to a 
diverse set of market participants using the transmission 
infrastructure to facilitate long distance energy transactions 
[3,4]. While the merits and shortcomings of electricity market 
restructuring are a contentious subject, at the very least it is 
fair to say that the number and size of blackouts on the North 
American electric grid has not decreased in recent years, as 
shown in Figure 1.  
 Recent advances in network and graph theory have drawn 
links between the topological structure of networks 
(particularly networks consisting of social ties and 
infrastructures) and the vulnerability of networks to certain 
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types of failures. Many classifications of network structures 
have been studied in the field of complex systems, statistical 
mechanics, and social networking [5,6], as shown in Figure 2, 
but the two most fruitful and relevant have been the random 
network model of Erdös and Renyi [7] and the “small world” 
model inspired by the analyses in [8] and [9]. In the random 
network model, nodes and edges are connected randomly. The 
small-world network is defined largely by relatively short 
average path lengths between node pairs, even for very large 
networks. One particularly important class of small-world 
networks is the so-called “scale-free” network [10, 11], which 
is characterized by a more heterogeneous connectivity. In a 
scale-free network, most nodes are connected to only a few 
others, but a few nodes (known as hubs) are highly connected 
to the rest of the network. The signature property of a scale-
free network is a power-law distribution (a very fat-tailed 
distribution) of node connectivity or degree. 

 
Figure 1: The number of large blackouts according to [NERC DAWG] 
between 1984 and 2006. The bars show the data after adjusting for demand 
growth (using year 2000 as the base year). The line shows the number of 
blackouts >400 MW before this adjustment. Clearly, the frequency of large 
cascading failures in the North American electric power system has not 
decreased during the 23 year period shown here. Assuming that large failures 
were not more common before this period, the overall frequency of large 
blackouts has not decreased since the formation of NERC in 1965. 
 

The structural differences between the random and scale-
free network models have important implications for network 
vulnerability. In particular, random networks tend to be fairly 
robust to targeted attacks but relatively vulnerable to a series 
of random failures or attacks. Scale-free networks, on the 
other hand, are highly vulnerable to targeted attacks or failures 
at one of the hubs, but are more robust to failures at randomly 
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chosen nodes [34]. Similarly, a network’s structure has 
important implications for strategies aimed at protecting the 
network against cascading failures or more deliberate attacks.2 
The world wide web is a good example of a scale-free 
network; the network as a whole can be made more robust by 
increasing the reliability of a fairly small set of critical hubs 
(such as google.com or yahoo.com). 

 
Figure 2: Small examples of the network structures used in this paper. 
 

The principal shortcoming of existing attempts to measure 
the network structure of electrical grids lies in the failure to 
explicitly incorporate the physical laws governing the flow of 
electricity within these networks. While the topological (node-
edge) structure of an electrical power network may suggest 
one set of behaviors and vulnerabilities, the electrical structure 
of the network may suggest something altogether different. 
The flow of power through the network is governed by 
Kirchoff’s Laws and not simply by topology. To address this 
shortcoming we introduce an electrical connectivity metric 
which incorporates the information contained in the system 
impedance matrix. This metric is referred to here as “electrical 
centrality.” Electrical centrality accommodates Kirchoff’s 
Laws and is more accurately captures the properties of node 
centrality, relative to metrics based on node-edge connectivity. 

This paper is organized in five sections. Section I is this 
introduction, and section II reviews the existing literature 
related to the subject matter. Section III reviews the classical 
network connectivity metrics, which provide information only 
on the topological structure of the network in question, and 
discusses some existing applications of these metrics to power 
networks. Section IV introduces the electrical centrality 
metric. In Section V we use the IEEE 300-bus network to 
illustrate the differences between our electrical connectivity 
metric and the classical topological connectivity metrics. 
                                                           

2 It is important to realize that, particularly in complex systems such as 
power networks, building more is not always better. The North American 
blackout of August 2003 was followed by a number of calls for massive 
investments in transmission infrastructure; [12], for example, suggested a 
program of investment and grid modernization amounting to $100 billion. The 
analysis of [13] and [14] suggests that simply building more transmission lines 
is unlikely to meet reliability goals, and [15] suggests that more intelligent 
control strategies can improve reliability at lower costs. 

Section VI offers some conclusions and extensions. 

II.  NETWORK CONNECTIVITY METRICS AND APPLICATIONS TO 
POWER NETWORKS 

Network connectivity is often measured using the degree 
of nodes in the network – the number of edges (and thereby 
other nodes) connected to a given node. The degree, k, 
distribution  varies substantially from one network structure to 
another. In a regular lattice structure (such as the nearest 
neighbor and second neighbor graphs shown in Figure 2) k is 
constant for all nodes. Random networks have an exponential 
degree distribution, as do most small-world networks. When a 
small-world network shows a power-law degree distribution, 
rather than an exponential, it is known as a scale-free network 
[11]. If P(k) is the probability that a randomly chosen node 
has degree k, the degree distribution of a scale free network 
follows ( ) ~P k k J� . In most real networks, Ȗ falls in the 
range of 2 to 3. Many seemingly different types of networks 
have been found to possess a scale-free structure, including 
the world wide web, airline networks, and protein interactions 
in yeast [5]. 

Power networks represent a natural test case for complex 
systems and network theory. However, the lack of widely 
available data on the actual topology of the power grid, 
particularly in the United States, has dramatically limited the 
number of analyses. The few existing studies generally find 
that power networks exhibit some kind of nonrandom 
structure, but there is disagreement over the actual structure of 
the network. In particular the existing studies disagree with 
respect to whether the tail of the degree distribution follows a 
power law or exponential distribution. Portions of the North 
American grid have been discussed in [5, 6, 16, 18 – 20]. The 
North American grid as a whole is discussed in [18], in which 
the authors report that the degree distribution of the power 
grid has an exponential or “single-scale” [11] form with a fast-
decaying tail, although the distribution of the number of 
transmission lines passing through a given node (the 
“betweenness” of a given node) does follow a power law. The 
authors of [16] find the same single-scale structure in the 
degree distribution for a portion of the electric network in 
California. The same result appears in [5] and [6] for the 
power grid of the Western United States. However, [10, 17] 
estimate a power-law relationship in the degree distribution 
for both the Western [10, 17] and Eastern [17] portions of the 
U.S. power grid. 

Structural properties of the Italian, French, and Spanish 
power networks can be found in [19] and [20]. These 
European power networks are generally found to have the 
same single-scale topological structure as the North American 
grid, with an exponential tail in the degree distribution. The 
distribution of nodal demands (or loads), however, follows a 
power law: most buses in the grid serve lower-than average 
demand, but a small number of buses serve a relatively large 
amount of demand. 

While some of the topological studies of power networks 
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simply sought to tease out information about the structure of 
the network (as in [5]), some papers focus on the relationship 
between network structure and system reliability. For the 
North American power grid, [16] introduces the concept of 
“connectivity loss,” which measures the change in the ability 
of the network to deliver power following the disconnection 
of a substation from the network.3 They find that the 
connectivity loss is significantly larger when nodes 
representing hubs are disconnected from the network, relative 
to the removal of random nodes. This suggests that the power 
grid has some kind of scale-free structure, even if it does not 
appear directly in the degree distribution. A similar attack 
vulnerability is shown in [18] for the Nordic power network 
and that of the Western U.S. In [17] the authors construct a 
probabilistic model of cascading failures as a function of the 
exponent Ȗ in the power law distribution and the number of 
nodes with degree one. They find that the loss of load 
probability (LOLP) predicted by the model for the Eastern and 
Western Interconnects is similar to the LOLP from actual 
reliability studies performed by the Bonneville Power 
Administration. 

III.  AN ALTERNATIVE CONNECTIVITY METRIC 
The existing literature on the structure and vulnerability of 

electrical power networks largely takes a topological approach 
to measure distance and connectivity. That is, the power grid 
is described as a simple graph of nodes connected by edges. 
Vulnerability analyses focus on the physical islanding of 
portions of the grid through attacks or failures at multiple 
nodes. The topological approach paints a somewhat confusing 
picture of power networks. Referencing the IEEE 300-bus 
network shown in Figure 3, it is apparent that while there may 
be a few nodes in the network that fall outside of an 
exponential probability distribution (and thus some evidence 
of a power-law tail in the degree distribution), the power 
network lacks the strong hub structure that is apparent in 
scale-free networks such as the world wide web and some 
airline networks.  

We argue that a fundamental weakness of the existing 
structural studies of power grids is that they focus on 
topological connectivity, while ignoring the electrical 
connectivity. In particular, a reasonably complete 
characterization of the network structure of the power grid 
would need to incorporate the following properties of 
electrical systems: 
1. Flow in a power network is governed by Kirchoff’s Laws 

and not by decisions made by individual actors at 
individual nodes. Power injections propagate through the 
network following a path of least resistance, apportioned 
by the relative complex impedance of each equivalent 
path. 

                                                           
3 The data set used in [16] cannot identify with certainty which nodes 

represent generator substations, and which nodes represent connection points 
to the distribution network or tie-points within the high-voltage transmission 
network. The authors make some assumptions regarding which nodes 
represent each type of substation. 

2. Power networks are best described by undirected graphs. 
The model in [17] argues that the power network can be 
thought of as a directed graph associated with a particular 
state of the network, and small perturbations in the system 
are unlikely to change the directionality. That is, every 
state of the network can be mapped into a set of 
directional power flows. This does not hold true for many 
cases in a power network. Due to the highly non-linear 
and generally non-convex4 nature of the equations that 
govern power flow in AC electrical systems, it is 
possible, and in some cases quite likely, that small 
changes in the state of the network can reverse the 
direction of power flow along a particular path. 

3. Because flows are governed by Kirchoff’s laws, to the 
extent that power networks are characterized by a hub 
structure, there is no a priori way to tell whether the hubs 
represent large inexpensive generators, load pockets, 
substation tie-points, or some other physical structure 
(this assumption is made in [16]).5 That is, a simple 
model of preferential attachment, as in [10], is unlikely to 
be a good evolutionary model explaining the emergent 
structure of power networks. 

 

 
Figure 3: Topology of the IEEE 300-bus test system. 
 
Of these, the most basic structural modeling issue is somehow 
incorporating Kirchoff’s Laws into the network structure 
metrics. Power grids tend to have highly meshed structures, so 
the mere topological proximity between two nodes will, in 
many circumstances, have less of an impact on the 
performance of the network than electrical proximity, which 
may or may not correspond to topological distance. The 
weighted degree distributions discussed in [22] represent a 
step towards resolving this measurement issue, but in the 
analysis of [22] the weights are based on capacity constraints, 
not any kind of path admittance or law of motion. 
                                                           

4 [21] offers evidence that convexity of the set of feasible solutions to the 
AC power flow problem is rarely, if ever, achieved. 

5 Some information may be contained in the network admittance matrix, as 
discussed below. For example, transformers tend to have much larger 
admittances than other pieces of network equipment. 
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The degree distribution is but one centrality measure 
ranking the importance of given nodes in the network. 
Another metric, more popular in the analysis of social 
networks than physical or technological networks, is 
betweenness [23, 24], defined in [25] as the fraction of 
shortest paths between pairs of nodes that happen to pass 
through a given node. In the most basic sense, betweenness in 
and of itself suffers from the same modeling issue as the 
degree distribution – it considers the topological structure of 
the network, but not the pattern of network flow propagation. 
This shortcoming has been recognized in [25] through the use 
of an electrical circuit as an example of how the shortest path 
(which would include nodes with a high betweenness) may 
not carry the largest amount of information (or current, in this 
particular case). The circuit example is then generalized to 
discuss a broader class of betweenness measures based on 
random walks through networks. 

Social network analysts have introduced a measure known 
as information centrality to describe how information is 
passed through a network of associates [26, 27]. 
Operationally, this is similar to gossip coming through the 
grapevine. The information centrality associated with a given 
node (or actor or agent, in the specific case of social 
networks), describes how much of the network flow travels 
along each path beginning or ending with that node. 
Expanding this metric to physical networks, information 
centrality is (at least conceptually) very closely related to the 
power transfer distribution factor (PTDF) matrix [28], in 
which the i,jth element indicates the change in power flow on 
the jth transmission line from a marginal change in net power 
injection at the ith bus. 

Flow-based betweenness metrics were originally 
considered in [29], with the circuit analysis of [25] an 
interesting variation. The authors of [30] demonstrate that if 
information propagates through the network following 
Kirchoff’s Laws, and if the network can be described as a 
single-commodity network (that is, there are single points of 
injection and withdrawal), then the resulting betweenness 
metric based on electrical flow is identical to the information 
centrality.6 

IV.  ARE POWER NETWORKS SCALE-FREE? 
That betweenness is equivalent to information centrality in 

certain circumstances is an interesting result. However, real 
power networks have multiple generators and loads, and most 
likely experience significant loop flows. Thus, the use of 
standard network metrics to compare power systems to 
standard network models is likely to be misleading. We 
examine the differences between power networks and other 
generic networks models using two novel methods. First, we 
                                                           

6 This would seem to confirm that the information centrality is equivalent 
to the power transfer distribution matrix for the special case of a power 
network with one (net) generator and one (net) load (a single-commodity 
network). As shown in [31], it is possible to create an equivalent single-
commodity power network out of a multi-commodity network only if there are 
no loop flows. Thus, this special case is probably not all that interesting. 

use the information contained in the network impedance 
matrix to calculate equivalent electrical distances between 
pairs of nodes, and examine the properties of the graph based 
on this distance metric compared to the usual topological 
distance metrics. Second, we construct electrical networks to 
conform to the properties of three common network models, 
and compare the electrical properties of these networks with 
those of an actual network of a similar size. 

 
Figure 4: A node-branch representation of the IEEE 300-bus test system. 

 
Figure 5: The probability mass function (histogram) for node degree in the 
IEEE 300 bus network. 

 
Figure 6: Based on the Watts-Strogatz clustering coefficient, the IEEE 300-
bus test system shares the structural complexity of much larger electric power 
networks. 
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The test case for this work is the IEEE 300-bus test 

network, which has 300 buses (nodes) and 411 branches 
(transmission lines or transformers). Figure 4 shows the 
topology of this network, while Figure 5 shows its degree 
distribution. The 300-bus network is much smaller than most 
real power grids, which may have tens, if not hundreds of 
thousands of buses and transmission lines. However, the 300-
bus system is sufficiently large so as to share several structural 
properties with actual power grids. An example is shown in 
Figure 6, which shows the Watts-Strogatz [9] clustering 
coefficient for standard IEEE test systems of various sizes, as 
well as the clustering coefficient for the power grid of the 
Western U.S., as reported in [9, 15]. While the 300-bus 
system is smaller than actual power networks, it is sufficiently 
interesting for our analysis. 

A.  Structural Properties of the 300-Bus Network 
The topological representation of the IEEE 300-bus 

network in Figures 4 and 5 can be visually compared with 
similarly-sized small-world and scale-free networks, as shown 
in Figure 7. The representation of the IEEE 300-bus network 
shown in Figure 4 does not immediately reveal any highly-
connected hubs that would suggest a scale-free network 
structure. Similarly, the degree distribution of the 300-bus 
network (Figure 5) does not fit well with a power law statistic. 
Further, the geodesic paths between random node pairs are 
longer than would be suggested by a Watts-Strogatz small-
world structure, where the average geodesic path length is less 
than six, even for very large networks. The topological 
structure of the 300-bus network would lead us to agree with 
the analysis in [5, 16, 18] that power grids are not 
characterized by a scale-free structure. 

 

 
Figure 7: Topological representation of the IEEE 300-bus network (bottom 
center) as compared with a similarly-sized random network (upper right) and 
scale-free network (upper left). 
 

However, as noted above and in [25, 30], flow in electrical 
networks is governed by Kirchoff’s Laws, which result in 
unique patterns of interaction between nodes in a network. 
The topological structure of the power network may therefore 
not say very much regarding the behavior of the network, and 
particularly its vulnerabilities. Kirchoff’s Laws are captured in 
the system bus-bus admittance matrix, defined by: 
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The definition of the Ybus matrix used here captures both the 
real and reactive (imaginary) portions of the line admittances. 
The Ybus matrix tends to be sparse, since 0bus

klY   for pairs of 
nodes k and l that do not share a direct physical connection. In 
our analysis we actually use the inverse of the Ybus matrix, 
which is traditionally denoted the Zbus (or impedance) matrix. 
Inverting the sparse Ybus matrix for a fully connected electrical 
power network, yields a non-sparse (dense) matrix, denoted 
Zbus

.  The equivalent electrical distance between nodes k and l 
is thus given by the magnitude of the relevant entry of the Zbus 
matrix. Smaller | |bus

klZ  correspond to shorter electrical 
distances (and a larger propensity for power to flow between 
these nodes, subject to capacity constraints along any of the 
topological paths).  

In Figure 8 we redraw the 300-bus network to show the 
electrical connections rather than the topological connections. 
There are [(3002)/2 – 300] = 44,700 distinct node-to-node 
connections in the Zbus matrix for the 300-bus network; the 
links shown in Figure 8 represent the 411 node pairs that have 
the largest electrical connections. The threshold value for the 
entries of the Zbus matrix is 0.00255, as shown in Figure 9. 
Thus, Figure 8 displays a graph approximately the same size 
as the original network topology shown in Figure 3 (300 
nodes and 411 edges). The atomistic nodes show buses in the 
network that have small electrical connections to the network 
as a whole.  

 
Figure 8: The IEEE 300-bus network has been redrawn here to highlight the 
structure of the electrical connections represented in the Zbus matrix. To make 
this representation size-compatible with the topological representation in 
Figure 3, only the 411 strongest electrical connections (out of 44,700 total 
electrical connections) are shown.  
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The two representations of the 300-bus network suggest 

very different structures. From a topological perspective, the 
300-bus power network looks neither like a random network 
nor a scale-free network. But from an electrical perspective 
(which captures the behavior of the network, not simply the 
physical structure), the 300-bus network looks to have a 
distinct group of nodes that are “electrical hubs” – that is, 
buses that are have a high electrical connectivity to the rest of 
the network. Power flowing through the network is, due to 
Kirchoff’s Laws, much more likely to pass through these 
nodes than other nodes. In the language of social networks, 
these would correspond to nodes with a high betweenness or 
information centrality. Figure 10 redraws the topological 
representation of the 300-bus network, but with the node sizes 
adjusted according to the electrical centrality (nodes with a 
higher electrical centrality are shown larger in the figure).  
 

 
Figure 9: The inverse cumulative probability distribution function for all 
node-to-node electrical connections. The threshold at which only 411 stronger 

(smaller | |bus

lkZ ) connections exist is 0.00255, as indicated. 

 

 
Figure 10: A representation of the IEEE 300-bus network, with the node-sizes 
adjusted to represent the relative magnitudes of the electrical betweenness 
measure. The nodes in the center with high electrical connectivity (critical 
nodes in the network) can clearly be seen. 

 
Based on the electrical information contained in the Zbus 

matrix, we re-interpret the degree distribution for the 300-bus 
network to show the electrical betweenness of each bus in the 
system. The electrical degree distribution is shown in Figure 
11. 

 
Figure 11: The inverse cumulative probability density function for the 
electrical betweenness (electrical degree) of the nodes in the IEEE 300-bus 
network. 

B.  Comparison of the IEEE 300 Bus Network with Other 
Network Structures. 

Topologically, the 300 bus power network does not have 
the properties of a scale-free network. Electrically, however, 
there appear to be a number of highly-connected nodes similar 
to what would be expected from a scale-free network. We 
now extend this analysis by creating simple electrical 
networks from the network topologies shown in figures 2, 4 
and 7. Specifically, we construct simple network of resistors 
corresponding to the topologies of the nearest-neighbor, 
random, and scale-free networks in addition to the 300-bus 
power network.  

To build the resistor networks, at each node we place a 1 : 
resistor and represent each link by a 1 : resistor. For each 
network, we calculate a resistance matrix, which is essentially 
equivalent to the Ybus matrix for an equivalent power network. 
The resistance matrix R, defines the sensitivity relationship 
between voltages and currents, as shown in eq. (2).  

 
 ǻV RǻI ,                   (2) 

 
Given this relationship, we can calculate a sensitivity matrix S 
according to: 
 

/kl kl kkS R R  for all k and l.            (3) 
 
The elements of S, describe the extent to which a state change 
at location i will affect a similar change at location j. 
Essentially this matrix tells the extent to which information  
(or whatever it is that is flowing through the system) will 
propagate through each network, or conversely, the extent to 
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which information can be contained within a small area.  In all 
five networks, sensitivity decays approximately linearly with 
the distance between nodes i and j (see Figure 12), but 
because of the high connectivity of the hubs in the scale free 
networks, and the relatively short distances between nodes in 
the random network, the number of nodes that would be 
affected by a given change is dramatically different for the 
different network structures (see Figure 13). In other words, if 
a scale-free or random network has properties similar to 
Kirchoff’s Laws, it will be very difficult to contain the 
propagation of information to a small area. The power 
network has substantially more information propagation than 
that shown by the second neighbor lattice structure, but much 
less than the random and scale free test cases.  
 

 
Figure 12: Average relative sensitivity Si,j plotted against the distance between  
i and j, for networks of resistors with different structures. For a given physical 
distance, the sensitivity is generally larger in the IEEE 300-bus network than 
in random or scale-free networks of approximately the same size. Information 
thus propagates more slowly in the 300-bus network than it would if the 
network had a scale-free or random structure. 

  
Figure 13: Distribution of the sensitivities for the networks of resistors. The 
quantity of a network affected by some change or disturbance depends on (or 
varies with) the structure of the network. 

C.  Extensions: Implications for Vulnerability 
Network structure is closely related to network 

vulnerability [16].  Thus, a deeper understanding of the 
structure of electric power grids can yield important insights 
for decreasing vulnerability and improving reliability.  
Presently, the authors are looking at the relationship between 
the proposed electrical centrality metric and the vulnerability 
of the system to failure and attack at particular locations. 
While the outcome of this research is pending, it is clear that a 
complex-networks perspective can provide some insight into 
the vulnerability of electrical power networks.  

V.  DISCUSSION AND EXTENSIONS 
A clear link exists between the topological structure of 

many networks and types of failures to which they are 
vulnerable or robust. Scale-free networks are particularly 
vulnerable to failures at their highly connected hubs. This 
makes them particularly susceptible to deliberate attacks on 
these hubs, but less vulnerable to failures at random locations. 
A series of denial-of-service attacks targeting a major hub in 
the world wide web (such as Google or Yahoo) could cause 
ripple effects crippling much of the physical internet [35]. The 
winter of 2006/2007 proved particularly difficult for airlines 
and their passengers, as snow and ice storms hitting hub 
airports caused major delays in areas where the weather was 
perfect. This suggests that resources aimed at protecting scale-
free networks should primarily be directed towards 
strengthening the hubs. 

The North American power blackout in August of 2003 has 
focused attention on network reliability and measures which 
could limit or prevent cascading failures. Many of the 
suggested measures, such as [12] involve large capital 
expenditures on new infrastructure. However, the nature of 
power networks is such that simply building lots of new 
transmission lines may not yield the desired performance 
improvements [13]. Further, it is not obvious that building 
more centrally-controlled infrastructure is necessarily a more 
cost-effective solution than implementing other novel control 
strategies [15]. 

Most analyses of the power grid have found a single-scale 
topological structure, which can arise if linking to high-
connectivity nodes is sufficiently costly to impair preferential 
attachment in the growth of the network [11]. Due the cost of 
building new links (transmission lines) simply increasing the 
connectivity of the grid (as in [12]) is prohibitively expensive. 
Further, siting of new transmission lines is becoming 
increasingly difficult [32]; even with the possibility of federal 
intervention [33] it simply may not be feasible to expand the 
current network in a fashion which optimizes its resilience. 

Our analysis shows that, measured properly, power 
networks bear some resemblance to scale-free networks. The 
hubs do not show up in a simple analysis of a power 
network’s topology, but a more detailed look at the network’s 
electrical structure reveals a network that shares many 
properties with other scale-free networks. The hubs in power 
networks themselves appear highly connected with other hubs, 



 8

indicating the presence of a highly vulnerable “core.” Further, 
disturbances in one part of an electrical network affect local 
areas substantially more than they affect remote regions. The 
effects are spread less widely in the power network relative to 
some other network structures.  
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