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Abstract—Cascading failures in electrical power networks
often come with disastrous consequences. A variety of schemes for
mitigating cascading failures exist, but the vast majority depend
upon centralized control architectures. Centralized designs are
frequently more susceptible to communications latency and band-
width limitations and can be vulnerable to random failures and
directed attacks. This paper proposes a decentralized approach.
We place control agents at each substation in a power network,
each of which uses decentralized model predictive control to select
emergency control actions. When making decisions the control
agents consider not only their own goals, but also the goals of
nearby agents. Thus the agents act with reciprocal altruism.
Results from simulations of extreme cascading failures within
the IEEE 300 bus test network indicate that this approach can
dramatically reduce the average size and social cost of large
cascading failures. Simulations also show that the bandwidth
required for message passing is well within the limits of current
technology.

Index Terms—multi-agent systems, model predictive control,
reciprocal altruism, cascading failures, power system blackouts

I. INTRODUCTION

ASCADING failures are found in many, if not all,

large network systems. Small failures in or attacks on
financial markets, the Internet, commercial air-traffic systems
and electrical power grids occasionally initiate cascades of
dependant failures. The results are often tremendously costly.
As did the large North American blackouts of 1965 and 1977,
the cascading failures in the North American (August 14)
and Southern European (September 28) grids in 2003 spurred
a wave of new interest into the mechanics of [6], [5] and
mitigation methods for cascading failures in power networks.
Because of their complex discrete and continuous dynamics,
cascading failures in power networks provide a challenging
test case for mitigation strategies that could be useful in other
infrastructure systems.

Power networks, like most infrastructure systems, are op-
erated by both decentralized and centralized controllers. The
decentralized controllers (relays for example) work with local
data to quickly make local decisions. The centralized con-
trollers (human operators for example) work with larger data
sets to make decisions along longer time horizons according
to global goals. Sometimes local controllers with limited
information do not, or cannot, make decisions that align well
with the global goals of the system. Distance relays that can
propagate a cascading failure in a power network provide a
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good example of this behavior. The goal of this work is to
develop decentralized control agents that gather information
from their neighbors to make real-time decisions that are good
with respect to the system as a whole. Such “reciprocally
altruistic” agents would bridge the gap between high-speed,
low-intelligence decentralized control and low-speed, high-
intelligence centralized control.

A. Centralized and decentralized cascading failure mitigation

Numerous centralized methods for cascading failure miti-
gation exist. Wide Area Control Systems (WACS) or Special
Protection Schemes (SPS) have been in development for many
years, with limited adoption and some success in the electricity
industry [1], [23]. When well designed, a SPS can provide
a power network with automated stress responses that can
arrest the spread of many cascading failures. SPS can enable
a network to operate with smaller margins [1], [13]. In some
cases the predetermined control actions that are common to
many SPS can act to increase the size of a blackout, rather
than decreasing its size. More recent WACS employ adaptive
concepts, including an algorithm that uses correlation among
generator phase angles to divide a grid into islands [22] and
optimization-based methods such as Model Predictive Control
(111, [9], [18], [16].

Few of the adaptive, centralized approaches have been
widely adopted. One arguable explanation for this is that
infrastructure networks in general, and power systems in
particular, are inherently decentralized systems. When speed
is important, as it is during a cascading failure, it is useful
for the decision makers to be co-located with the sensors and
actuators. This is largely a function of communications latency,
which has been shown to negatively affect some WACS [17].
Some emerging designs use decentralized controllers as a
part of the overall design. The Strategic Power Infrastructure
Defense system described in [12] employs a hierarchical,
multi-agent architecture. A multi-agent approach was used in
[15] to coordinate the actions of generator controllers to damp
inter-area oscillations. Decentralized control agents were used
in [7] to reroute power flows in a DC shipboard power system
by adapting the max flow problem from graph theory to a
decentralized formulation of the power flow problem.

The method proposed in this paper differs from the above
decentralized algorithms in several ways. Firstly, it can manage
transmission-line overloads, which are particularly important
for cascading failure propagation. Secondly, it does not require
any real-time interaction with centrally located operators or
blackboards. Thirdly, the method is sufficiently general that it
could have application in other problem domains.
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B. A formulation for emergency control in power networks

A good objective for power system operations is to max-
imize the difference between the benefit of service provided
(electrical energy) and the cost of providing that service (fuel
cost, maintenance costs, etc.). In the economics literature this
is known as social welfare maximization, a form of which is
used in many Optimal Power Flow formulations [20]. When
a power system is stressed, where a cascading failure is likely
or is already in progress, fuel cost is of lesser importance
relative to the losses associated with interrupted service and
damaged equipment. Thus during stressed operations (“Alert”
or “Emergency” stages from [8]), a good operating policy is
to simultaneously minimize the costs associated with miti-
gating control actions (wear and tear on the equipment and
interrupted service) and the risk of interrupted service that
could result from future dependant failures. Eqs. 1-3 provide
a formal description of this problem, which is here referred to
as the Emergency Control Problem (ECP).

Given a discrete time horizon starting with the current time
(to) and ending at some point in the not too distant future (t ),
a state matrix: X = [xg, .., Xg, ...Xk|, @ control variable set
point matrix: U = [ug, ..., ug,...,uk], and a state predictor
function g(...), we can formulate the ECP as:

n%}n (U, X) 4+ r(U,X) (D
s.t. Xk41 = g(xk7 ug, uk,—‘,—l) (2)
u(ug) < upqr < u(uy) 3)

where ¢ and r are estimates of the cost and risk associated
with a trajectory of control and state variables. Assuming
(1) that the system is deterministic within the time horizon
and accurately modeled by g, (2) that r provides an accurate
measure of the expected losses after ¢x (the end of the time
horizon), (3) that the problem is convex, and (4) that the
time steps are small enough to ensure that all of the useful
information about the trajectory is represented by the discrete
signals, an optimal solution to ECP (U,) will be at least as
good as a control signal produced by any other controller.
When there is uncertainty (random variables) in a system, g
will not provide perfect next state predictions. There are two
approaches for dealing with uncertainty in an optimization-
based control problem. The first approach is to reformulate the
problem using stochastic programming, explicitly modeling
the random variables from estimated probability distributions.
This approach can improve the quality of the output signal,
particularly when the variables do not follow Gaussian distri-
butions, but substantially increases computational complexity.
Another approach is to use feedback and small time steps
to compensate for modeling errors and uncertainty. While
a combination of these two methods may be considered in
future work, this paper takes the second approach (feedback)
to uncertainty. The result is a Model Predictive Control (MPC)
problem that can be used for centralized cascading failure
mitigation given good real-time system observability and com-
munications bandwidth at the operator’s facility.

While it may be feasible to solve the ECP from a central
location (Section 2 describes the centralized approach), a
decentralized solution could have a number of advantages,

particularly in terms of increased robustness and decreased
communications bandwidth. With this in mind this paper (in
Sections 3 and 4) describes a way to use reciprocally altruistic
software agents to solve the ECP in real time. Section 5
describes experimental results that indicate the effectiveness of
this decentralized approach to emergency control and Section
6 provides some conclusions.

II. CENTRALIZED MPC FOR CASCADING FAILURE
MITIGATION

This section describes how the general ECP formulation
(Egs. 1-3) can be used to select load-shedding and generator
adjustments to quickly mitigate the effects of a cascading
failure from a central location. The problem will use as
its control variables (uj): generator power output set points
(P¢) generator voltage magnitude set points (|V|) and load
reduction. We assume that load can be reduced continuously
through carefully selected switching actions and that buses
are defined such that generators and loads are at different
buses. Demand reduction is represented by a reduction factor
Ad € [0,1] for each bus d € D, such that the injection by
loads at bus d is Py + jQq = A(Pyq + jQq). Here Py + jQq
represents the demand at bus d before demand reduction.

With these definitions and using the A operator to represent
differences in discrete time (Azp = x41 — xx) the cost
function (c in Eq. 1) can represent the costs associated with
changes to the control variables:

X, U) = 4

K
SToM(ehAN +  cEAPG+chy [AIVal)
k=1

The three cost vectors (cp, cg, cy) represent demand reduc-
tion costs (cp), fast generator ramping costs (cg) and costs
associated with rapid changes to voltage set points (cg). We
assume that these costs can be determined and set off-line
by operators or regulators. By using a separate cost term
for each control variable one can tune the system to give
preference toward load shedding at less critical locations and
thus reduce the probability of interrupting critical loads. The
discount factor, p*, places higher importance on actions in the
near future. Discount factors are useful in planning problems,
such as an MPC formulation, because uncertainty increases
with time.

The risk term (r in Eq. 1) estimates the impact of stress
on the risk associated with future cascading failures. The risk
function described below is simple, but has proved useful in
practice. It assigns a cost to excessively high branch current
magnitudes and low voltages over the time horizon. When all
voltage and current magnitudes are within their limits over the
time horizon, r evaluates to zero. When currents are high or
voltages are low, r is proportional to the excess:

K
rX,0) = 3 (f max ([Tl — Bi(k) © ]T],0) +
k=1

o max (|Vi| = By (k) © [V].0))  (5)



where x ©® y represents the element-by-element product of x
and y, cy and cy are cost vectors for excess currents and low
voltages, |I| and | V| are vectors of current and voltage limits,
and B7(k) > 1 and By < 1 are scalars that progressively move
the effective current and voltage stress thresholds (5;(k)|I|
and Oy (k)|V]) toward the actual limits over the time horizon.
In the examples used in this paper 3(k) are chosen to force
the effective voltage and current limits toward the actual limits
linearly with a fixed reduction rate. For example, if the current
on branch ¢ is |I;| = 150A, the current limit is |I;| = 100A,
and the reduction rate is set at 10% (a; = 0.1), 3;(k) will be
the sequence: 3;(k) € {1.4,1.3,1.2,1.1,1.0}.

The state-predictor function, g(...) provides a mapping
between state and control variables and system state at next
time step. For this application we use a linear state predictor
function with the following form:

Axpy1 = Apxy + BAuy, (6)

which becomes the direct function xj1 = Xg + A" 1BAu,.
When A and B are built to form a linearized version of the
AC power-flow constraints (P + jQ = V © (YV)*), Eq. 6
is a fairly accurate predictor so long as the changes at each
MPC time steps are small.

The control variable limits (Eq. 3) limit the control variable
set points over the time horizon (0 < A\, <1, Pg < Pg <
Pg, and |[Vg| < |Vgi| < [Vg|) and changes to the set
points, as shown in Egs. 7-9.

—Pgo< APgir <0 @)
—AlVg| < AlVey| <A|Vg| (8)
-1< AN <0 )

The voltage change limit A|V| is chosen to force generators
to change their set points incrementally. Table I shows typical
values for the parameters used in the EPC formulation.

Table 1
TYPICAL PARAMETERS FOR THE GLOBAL ECP FORMULATION

Parameter  Typical range  Value used for Fig. 1 Units
AlVg| [0,0.01] 0.01 puV
P (0,1] 0.09 -

cr [106,1019] 108 $/pu. A

cy [106,1019] 108 $/pu. V

co, [1010,1014) 1012 $/radian

ar [0.05,0.20] 0.10 fraction of |I| limit
ay [0.001,0.02] 0.01 puV

cp (100, 10000] Randomly assigned $MW
cAY [0,105] $10,000 $/pu. V

ca [0,100] 30 $/MW

A. Illustrative results

To demonstrate that the global ECP can be used to reduce
the size of cascading failures, we simulate a global ECP
controller interacting with a power-flow model of the IEEE
300 bus test case as available with MATPOWER [24]. To sim-
ulate cascading failures, random branch outages were injected
into the network to find contingencies that cause over-current
conditions. After injecting a contingency (removing branches),
the system is simulated in time by a sequence of AC power

flow calculations. At each time step a set of emergency control
actions (AP¢, A|Vg|, and A)) are calculated from which
loads and generators are adjusted. Figure 1 shows the ECP
control actions, along with currents and voltages, for a seven
branch contingency on the 300 bus network. If the overloads
had been allowed to persist, the system would have cascaded to
a near total blackout. By shedding 0.43% of demand (in MW)
with the ECP controller a system-wide cascading failure was
averted. Because the algorithm chooses load shedding based
on cost-priorities substantially less of the total demand value
was lost (0.035% of the total value in $ vs. 0.43% of the load
in MW). Also, experimental results show that the inclusion
of generator bus voltage settings in the control variable set
can significantly reduce the cost of mitigating control actions.
Without voltage control the amount of load shedding required
increases from 100 MW to 164 MW.
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Figure 1. Time domain simulation results showing mitigating control actions
after removing 7 branches from the IEEE 300 bus system. Branch currents
are shown normalized by their limits: |I|/|I].

III. PROBLEM DECOMPOSITION, COOPERATION AND
RECIPROCALLY ALTRUISTIC AGENTS

In resource-constrained systems there are many problems
that are more effectively solved by groups of agents, rather
than a single problem-solving agent. If a team of problem-
solving agents is to arrive at a good solution, the problem must
be decomposed into subproblems, each of which is in some
way more tractable than the global problem. The process of
dividing a large problem into sub-tasks is known as problem
decomposition. There are many ways to decompose a large
problem into subtasks. With some problems, decomposition is
a fairly straightforward process: find portions of the problem
that are loosely connected to other portions of the problem,
assign the sub-problems to agents, and assemble the sub-
problem solutions after the agents complete their work. Take
for example the solution of a large Monte-Carlo simulation
problem. Once a mathematical system model is established
each random perturbation of the problem can be solved in



parallel without interaction among the solver-agents. The
distribution of outcomes is relatively easy to compute after the
agents complete their calculations. However, many problems
have tightly interconnected components, in which vastly supe-
rior solutions can be found when problem-solving agents share
information and coordinate their actions while they are still
working on their solutions. One approach to coordinated work
is to decompose the problem into tasks that can be completed
sequentially. An assembly line is an example of sequential
decomposition. The Gauss-Seidel power flow solution method
[14] is another. Series work can provide good results in
many, but not all, problems (see [3] for a proof regarding the
effectiveness of sequential work). When a problem has many
sub-problems and tight time constraints, series work is not
practical. For the case of large, time-critical network control
problems such as the ECP in a power network, series work
is impractical with realistic communications constraints. Such
problems require a problem decomposition that facilitates
high-speed, highly-coordinated, real-time decision making.
Because we are interested in problem decomposition meth-
ods that are practical for real-time problems (with time hori-
zons in the seconds to minutes range), we will restrict our
attention to problems that can be divided among n control
agents that work in parallel and which are located at nodes in
a network. Thus the feasible control space, u(t) € (tx), and
state space, x(f;) € X(tx), can be divided disjointly among
the agents such that each variable is assigned to exactly one
agent. If uy,, un,, xn,, and xp, represent the control and
state vectors for two arbitrarily chosen agents a and b, the
subscript sets N, and N, have the following properties:

U -
=1

N,NNy, =

N : uy e = Ug

0,Va,be{1,...,n}

After dividing the variables among agents in this way, assum-
ing that the objective function can be separated into a sum of
sub-objectives, the global problem can be written as follows:

min
u

flu,x) =" fi (un,, xn,) (10)
=1
g7, (uny Xw;

Here the constraints are divided such that each constraint that
includes any of agent i’s variables is included in the set M.
The constraints that are not affected by agent i’s local variables
are in the set M;. Symbolically:

M; = {Va : quwaiga 7é O}

We assume that the control and state variables can be defined
such that interactions occur only through state variables (x). In
this form it is fairly easy to divide the objective and constraints
among agents. Each agent ¢ is responsible for a sub-objective
fi and a set of constraints gs,. Note that the sets M; may
overlap.

For most network problems there exists a fairly natural way
to assign terms in a global objective function to locations

s.t. g(u,x) = [ <0 (11

(agents) in the network. In a power network, for example,
we can assign the costs associated with loads and generators
to agents located at substations from which these variables are
controlled. With the global problem thus defined it is straight-
forward to divide the problem into a set of agent sub-problems
of the form:

min fitun,, xn;) (12)
uNi
s.t. gM; (uNmXNmXFi) <0 (13)

One candidate decomposition of this problem would be to
allow each agent to solve its sub-problem independently, with
some assumed value for the external state variables (Xﬁ-)’
and implement their chosen control actions uy,. Under very
strict conditions, an “independence decomposition” of this
sort will give optimal results. Specifically, if every agent’s
decision at optimality will have no effect on other agents’
decision, the results of independent decision-making will be
optimal. Symbolically, if V x—) gy, = 0! for all 4, the

Ni ).
sub-problems are completely separable and the results of

independent optimization will be optimal. When the external
variables (xz;) do appear in agent ¢’s constraints, some
cooperation among the agents is needed to obtain good results.
The following describes some common types of cooperation
using this optimization framework.

A. Voting

Agents that cooperate through a voting system must abide
by additional constraints (generally laws enforced by public
officials) as decided upon by the majority. We can represent a
voting system in the context of optimizing agents by adding
additional constraints to the agent sub-problems:

min filun,,xn;,) (14)
uNi

s.t. gn, (un,, XN, Xx) <0 (15)

V(uNi,xNi,xm) <0 (16)

Eq. 16 is a set of constraints that every agent must consider
while making decisions. For example drivers agree to constrain
their driving behavior in a environment with voted-upon traffic
laws. Constraints, such as a speed limit, could be represented
by inserting the speed constraint into v. When democratically
selected constraints are well-chosen, agent behaviors are more
nearly optimal, though voting systems certainly do not guar-
antee optimality [2].

B. Iterative information exchange

In the independence decomposition (Eqs. 12-13) agents will
obtain good results if every agent can predict the external
state variables (xz;) after the optimization process has com-
pleted. One way for agents to estimate these variables is to
iteratively exchange preliminary estimates of these variables
with neighbors before making a final decision. This process
was employed in [4] and shown to lead to optimal results
under some conditions. The decentralized optimal power flow

'The subscript asterisk (z) is used to indicate optimality.



methods described in [10] also fall into this category. Unfortu-
nately the number of iterations required to converge to arrive
at optimality can make this type of cooperation impractical for
time-critical decision making.

C. Perfect altruism

One way to guarantee optimality would be for every agent
to share all of its information with every other agent and
have every agent solve the global problem, implementing
only the local portion of the solution. If every agent could
have perfect information and would agree to act with perfect
altruism (global welfare optimization) optimal outcomes could
be guaranteed. Every agent would be working with the global
problem and would thus arrive at the same, globally optimal,
conclusion. Unfortunately this type of decomposition is im-
practical in all but the simplest problems for two reasons.
For one it is impractical for every agent to exchange all
information with every other agent. If there are n agents, the
communication system will need to carry n(n — 1) messages
to get every agent’s state to every other agent. This level of
communication becomes increasingly impractical as the size
of the problem grows. Also, having every agent solve the
global problem means that the agents must have substantial
computational abilities to quickly arrive at an answer.

D. Reciprocal altruism

Between perfect altruism and complete independence (Eqs.
12, 13) is reciprocal altruism (RA). According to Trivers
[19] altruism is, “behavior that benefits another organism,
not closely related, while being apparently detrimental to the
organism performing the behavior.” In other words an agent
acts altruistically when it considers the goals of other agents
when making local decisions, even if doing so could be
detrimental to its local goals. Reciprocal altruism occurs when
agents choose to consider the goals of other agents (though
not necessarily all other agents), while assuming that the other
agents will act reciprocally. With these definitions we can write
the goals (objectives and constraints) of reciprocally altruistic
agent a as follows:

min

un, Vie[aUR,]

fa<uNa7XNa) + Z fb(uNb’XNb)

beR,
s.t. gN; (UNZ,XNi,XE) <0,Vie [a U R]

For reciprocal altruism to be effective, each agent must choose
a set of agents (R,) whose goals it will consider while
making local decisions. There are many ways that agents
can choose neighbors for goal-sharing. Wilkinson [21], for
example, found that vampire bats choose to regurgitate food
to other bats based on relational proximity (kinship) and the
potential for reciprocation. In a community of agents that can
be represented as a graph, one way to illustrate the choice of
reciprocal sets based on relational proximity is to have each
R, be the set of agents that can be reached by traveling over
no more than r links (see Figure 2). While there are other
ways to measure proximity, this method has proved useful for
our application.

o

¢ * *
Agent b ol ’ I ~ Agent a

R 1

|

Figure 2. Agents a and b with their reciprocal sets (R4, Rj) chosen based
on a graph distance of r = 2.

IV. DECENTRALIZED MPC FOR CASCADING FAILURE
MITIGATION

With a few additional details, it is possible to combine the
reciprocally altruistic agents described in Section III with the
ECP in Section II to design a control system that can solve
the ECP with near optimality. For the power systems case, we
place one agent at each substation (node) in a power network.
The decision and state variables (load, generator set points,
voltages and currents) and their associated costs (c and r
in 1) and box constraints (3) are assigned to agents based
on proximity. Agent a at bus a will be responsible for the
generator or loads connected at bus a and the voltages and
currents at this bus.

Each agent forms a linear state prediction function (Eq.
2) for each of its local state variables using the power-flow
Jacobian. In order to form the power-flow Jacobian for a given
system an agent needs four types of data: (1) the structure of
the power network (branch locations and impedances), (2) the
status (open or closed) of circuit breakers in the system, (3)
bus voltage magnitudes and (4) the phase-angle shift across
transmission lines. The initial structure of the network (1) can
be provided to each agent off-line by the system operator.
When an agent does not have recent measurements for (2-4),
it assumes that (2) circuit breakers are closed, (3) bus voltages
are at 1.0 p.u. and (4) phase-angle difference are zero. Thus
each agent maintains a model of the entire network, but uses
default data to make up for data that it cannot collect from its
neighbors.

Once agent a assembles an initial network model, it chooses
its reciprocal set (R,), which includes two sets of agents: a
set of local neighbors (L,) and a set of extended neighbors
(E,). L, is defined as the set of agents that can be reached by
traveling no more than r; branches and £, the agents that are
not in L, and can be reached by traveling over no more than 7,
branches. R, is thus the union of agent a’s local and extended
neighbors: R, = L, U F,. Agent a exchanges information
(state and control variables) with agents in L, frequently (at
least once per second) and with agents in F, occasionally
(once per day to once per week). When an agent does not
have good data for a given variable it uses the default values
for voltages, phase-angles and circuit breakers and assumes



that no significant changes will occur at remote generators or
loads and that all remote currents are well below their limits.
Thus the control agent at bus a uses the following formulation
to make decisions:

i c(A 17
min Zp wwk) + r(xwr)) (17)
S.t. XW,k+1 = xXwi + BAuwy (18)
u(uws) < uw 1 < d(uwg) (19)

where B is a matrix that comes from the linearized AC
power flow equations and W = Ule RaUd] N;. All of the
remaining variables and constraints are the same as described
in Section 2. In addition to cooperating by sharing goals
and information with its neighbors, each agent uses a simple
negotiation protocol to improve on its decision before taking,
thus combining RA and iterative information exchange. The
following describes the resulting decision process for agent a:

1) Set ty =to + At.

2) Gather measurements from local sensors.

3) Share local measurements with local neighbors (L,).

4) Share measurements that are outside of limits with
extended neighbors (E,,).

5) Calculate a set of control actions (Aul®) by optimizing
Egs. 17-19. When r(xw) = 0 the optimal action is
Auy, = 0, thus skip 5-8.

6) Choose a set of agents (P) with whom to negotiate. P is
chosen such that P = {Vi : ||Aul?l|| < €}. ¢ is chosen
to ensure that agents only negotiate with agents who
appear to need to take significant action.

7) For each agent b € P send a set of measurements that
are current in a’s model, but are not likely to be current
in b’s model, given the locations of a and b. If this is
the first round of negotiation this set of measurements
(xq and ug) will be: Q = ;e ~7; Ni- Each agent b
incorporates this new information into its model, which
can expand W.

8) Repeat from 5 until a predefined control deadline (¢, =
to + 0.8At) is reached.

9) At time t. implement the locally calculated control
actions: Au[N]

10) When the current time reaches tg + At repeat from 1.

V. SIMULATION MODEL AND RESULTS

We test the decentralized control system described in Sec-
tion IV by applying it to an AC power-flow model of the IEEE
300 bus power network. Ten heavily loaded permutations of
this case were generated by randomly adjusting the generator
outputs and loads and setting the branch current and bus
voltage limits such that no single branch outage results in
a current or voltage violations. Parallel lines were added in
locations where a single branch outage would have separated
the grid into separate islands. Each load is given a random
demand-reduction cost in the range of $100-$10,000/MW. For
each of the ten cases, ten sets of branch outages were randomly
selected by random draws from a Bernoulli distribution, se-
lecting those cases that caused at least one current or voltage

violation. Each resulting disturbance consists of between 4 and
15 branch outages.

We estimate the impact of the cascading failures, with and
without mitigating control actions, using a pseudo-dynamic
power flow model. The model includes simulated time over-
current relays that remove branches when the integral of the
excess current exceeds a threshold. At each time step (which
is assumed to represent one second in the model) the model
uses a Newton-Raphson AC power flow to find the result of
switching and control actions in the previous time step. The
model roughly simulates under-frequency load shedding by
reducing load and generation in 25% chunks if the power-flow
calculation does not converge. Using this simulation model
the mean demand loss over the 100 test cases is 7,593 MW,
or 32.6% of the initial demand. The simulated cascading
failure costs range from $39 to $147,000,000, with a mean
of $5,600,000.

This same cascading failure model was used to estimate
the effectiveness of the centralized and decentralized con-
trol schemes described in Sections 2 and 4. As described
in Section 3, the selection of neighbors, or reciprocal sets
(Ry), is essential to the effectiveness of a community of RA
agents. If the reciprocal sets are too large, message-passing
can overwhelm the communication channels and the agents’
decision processes becomes overly complicated. If the sets
are too small, agents will not make good decisions with
respect to the global problem. To determine an appropriate
size for R,, we simulate the agent-based control algorithm
for different r;, measuring both the distribution of blackout
costs and the amount of data exchanged by the agents. The
radius of the extended neighborhood is fixed at r. = 10
for these simulations. All other parameters are as described
in Table I. Data exchange, or bandwidth, is measured by
logging the size (in kilobytes) of each message the comes
in to or goes out from each agent. Figure 3 shows that as 7,
increases the average blackout size decreases and the amount
of data exchanged increases. As the agents increase the extent
to which they exchange information and share goals (their
altruism) the system approaches global optimality, though with
increasing bandwidth requirements. Simulations also indicate
that the negotiation protocol (steps 6 and 7 in Section IV) can
reduce the impact of the cascading failure, but substantially
increase the communications burden.

VI. CONCLUSIONS

This paper describes a new approach to decentralized
control, which uses reciprocally altruistic control agents and
model predictive control. The agents make local decisions
based on locally maintained models of the system to be
controlled and goals that are shared with neighboring agents.
We show that as agents share more of their goals, effectively
increasing their altruism, their quality of their decisions in-
creases but with the side effect of substantial increases in
message passing. For the power network test cases used,
we find that nearly globally optimal results obtain from this
approach, with fairly reasonable bandwidth requirements.

While this paper focuses on the mitigation of cascading
failures in electricity networks, the method described here
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Figure 3. Cascading failure size distributions, and communications require-

ments, for different control scenarios. As the size of the local neighborhood
(r7) increases, the control quality approaches the results obtained from a single
global, omniscient MPC agent (right), though with increasing communication
bandwidth requirements. The negotiation protocol gives results that are nearly
as good as the omniscient controller, but further increases the bandwidth
requirements.

should be useful for a variety of network control problems,
as would be found in many infrastructure systems. Future
research will focus on the application of this approach to
other infrastructure control problems to determine if indeed
reciprocally altruistic control agents can be used within other
problem domains.
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