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Abstract 

Using data from the North American Electric Reliability Council (NERC) for 

1984-2006, we find several notable trends. We find that the frequency of large 

blackouts in the United States has not decreased over time, that there is a statistically 

significant increase in blackout frequency during peak hours of the day and during 

late summer and mid winter months (although non-storm-related risk is nearly 

constant through the year) and that there is strong statistical support for the 

previously observed power-law statistical relationship between blackout size and 

frequency. We do not find that blackout sizes and blackout durations are 

significantly correlated. These trends hold even after controlling for increasing 

demand and population and after eliminating small events, for which the data may be 

skewed by spotty reporting. Trends in blackout occurrences, such as those observed 

in the North American data, have important implications for those who make 

investment and policy decisions in the electricity industry. We provide a number of 

examples that illustrate how these trends can inform benefit-cost analysis 

calculations. Also, following procedures used in natural disaster planning we use the 

observed statistical trends to calculate the size of the 100-year blackout, which for 

North America is 186,000 MW. 

 

Keywords: Electricity reliability, power system blackouts, cascading failures, policy 

analysis 
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1. Introduction  

Recent large electricity disruptions in North America (e.g. 14 Aug. 2003, 12 Sept. 

2005) and Europe (e.g. 28 Sept. 2003, 4 Nov. 2006) highlight the extent to which 

urban societies depend on reliable electricity infrastructure. Understanding what 

trends exist in the history of electricity infrastructure failures is essential to the 

process by which policy makers choose among priorities for improving this and 

other infrastructures. After a major blackout, policy makers typically commission 

detailed analyses of the specific events that preceded a failure in electricity service 

(UTCE, 2006; USCA, 2004). Sometimes these event-focused reports result in 

substantive policy changes aimed at forestalling future failures; the creation of a US 

“Electricity Reliability Organization” by the US congress (EPACT, 2005) is one 

example. However, a narrow focus on one particular blackout can obscure longer 

time-trends that can have important implications for policy and investment 

decisions. The goals of this paper are (1) to determine what trends exist (or do not 

exist) in the available historical record of large blackouts1 in the United States and 

(2) to show how these trends are relevant to policy analysis within the electricity 

industry.  

Data classification and research hypotheses 

 To clarify this discussion it may be helpful to define “blackout” and the measures 

used in this paper to classify blackouts. In this paper, a blackout is any unplanned 

disruption of electricity service to multiple customers that lasts more than 5 minutes. 

Shorter disruptions are commonly considered power quality events, and are therefore 

not considered here. We use “large blackout” to describe events that result in service 

disruptions to at least 50,000 customers or 300 MW of demand. This definition is 
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based on the regulatory reporting requirements in the United States. Each blackout in 

our data is categorized in three dimensions: size, time, and cause. Size is measured 

in both MW and customers affected. Time is measured in the start time of the event 

and its duration. There are two types of blackout causes. External causes, such as 

storms, vandalism, or operator error, are the causes that initiate the blackout. In some 

blackouts, a set of external initiating events triggers a sequence of subsequent 

component outages, known as a cascading failure. Where the reports indicate that a 

blackout was propagated, at least in part, by cascading failures, these events are 

noted as caused by cascading failure. Some blackouts thus have multiple causes. 

Section 2 discusses the data and classification process in more detail. 

After classifying our data in the above three dimensions we test the following 

trend-related hypotheses: 

1. The data show an observable decrease in the frequency of large blackouts, after 

adjusting for demand growth and population increases. 

2. There are no seasonal trends in the data. (Blackout probability does not change 

with time of year.) 

3. There are no time of day trends in the data. (Blackout probability does not 

change with time of day.) 

4. The fit between the blackout data and a power-law cumulative probability 

distribution is significantly better than the fit to an exponential distribution for 

large blackouts.  

5. The data show a positive, significant correlation between blackout size and 

blackout duration. 

The rationale for each hypothesis is discussed briefly in Section 3.  
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 Robust trends in the history of large blackouts can be valuable inputs to the 

investment and policy decision-making process. A power-law relationship between 

event size and probability (Hypothesis 4), as previously observed by Carreras et al. 

(2000; 2004) and Talukdar et al. (2003), indicates that it is important to design 

electricity infrastructure to be robust to large failures rather than focusing narrowly 

on small failures. Section 4 provides several calculations illustrating how the 

observed trends can impact the benefits and costs of investment and policy options.  

Related research results 

Several recent papers note useful patterns in the North American blackout data. 

Carreras et al. (2000; 2004) show that large blackout sizes follow a power-law 

probability density function (pdf). Talukdar et al. (2003) show that the data fit a 

power-law statistic far better than they do to an exponential (Weibull) pdf. Carreras 

et al. (2004) argue that time-correlations in the blackout data (using the Hurst 

parameter, which measures auto-correlation over multiple time-scales) give evidence 

of self-organized criticality, providing a plausible explanation for the power-law tail. 

While it may be possible to find other explanations for the power-law frequency 

distribution (see Newman, 2005, for a discussion of power-law generating 

mechanisms), there is some agreement that the data fit well to a power-law statistic. 

However the existing research provides little evidence for the statistical significance 

of this relationship. Clauset et al. (2009) report only moderate statistical support for 

the power-law conclusion. Using a more comprehensive and carefully filtered, data 

set than what has been reported in past studies, the results reported here provide 

strong statistical support for the previously reported power-law frequency 

distribution.  
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 Simonoff et al. (2007) study the blackout data available from NERC (the North 

American Electric Reliability Corporation) for 1990-2004 from the perspective of 

assessing the risk associated with a terrorist attack. The authors build several 

regression models based on these data, which provide some evidence relevant to the 

hypotheses proposed above. In related work, Greenburg et al. (2007) use results 

from an economic model of terrorist-initiated blackouts to show the value of targeted 

investments that improve the resiliency of a power grid. 

We use a more extensive data set (1984-2006) than these existing studies and filter 

the data in several ways to remove artifacts that could lead to misleading 

conclusions. Specifically, we control for demand growth, supply shortages, extreme 

natural events and the spotty reporting of small events. The removal of small 

events—those less than the 50,000 customer or 300MW thresholds that trigger 

federally mandated reporting in the United States—is particularly important if we 

are to be confident that the observed trends are not artifacts of selective reporting. 

We then suggest applications of the revealed trends to decision-making and policy 

problems. 

The largest blackouts tend to be the result of either extreme natural events 

(hurricanes, ice storms, etc.) or cascading failures (see Table 1). Cascading failures 

are the subject of a rapidly growing body of research. Baldick et. al. (2008) provide 

a thorough review of the research on cascading failures. Ren and Dobson (2008) 

study a nine-year time series of branch outage data for one utility to develop a risk 

model for a specific region. Dobson et al. (2005) and Chen et al. (2005) describe 

probabilistic models of cascading failure risk. Trends indentified in this paper may 

be useful to refine these blackout risk assessment tools. 
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 This paper is organized as follows. Section 2 describes the data that are used in this 

study. Section 3 describes the trends that are found (or not found) in these data. 

Section 4 provides some example calculations illustrating how these trends affect 

decision-making and Section 5 presents our conclusions. 

2. The NERC disturbance data for 1984-2006 

Both the US Department of Energy (DOE) and the North American Electric 

Reliability Council (NERC) require that organizations submit reports when 

sufficiently large disturbances occur within their territories. DOE publishes the 

resulting data as "Form 417'' reports, and NERC provides the data through the 

Disturbance Analysis Working Group (DAWG) database and “System Disturbance 

Reports.” By DOE regulations, utilities and other load serving entities must report 

all disturbances that interrupt more than 300 MW or 50,000 customers (DOE, 2007). 

Some smaller disturbances are also included in the DOE and NERC reports. Until 

the establishment of NERC as the US “Electricity Reliability Organization” (its rules 

went into effect in 2007), NERC had limited ability to enforce its reporting rules 

during the period that we study. However, because of the DOE reporting 

requirements and the resulting publically available reports, NERC has had access to 

the records that utilities submit to DOE in addition to the information collected 

directly by NERC. As a result there is substantial agreement between the two 

sources, particularly for blackouts larger than 300 MW. Of the 148 EIA records 

(2000-2006) with recorded sizes greater than or equal to 300 MW, 19 (13%) do not 

include a corresponding report in the NERC records. Sixteen of these are storm-

related events that appear to be isolated to the distribution infrastructure of a single 

utility, and are thus outside of NERC’s primary jurisdiction. The three EIA records 
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that do not fall into this category affected a small number of customers within a 

single service territory (4 customers on Sept. 7, 2003, 1 customer on Nov. 5, 2003, 

and 940 on May 3, 2004). The analysis presented on this paper is based on the 

NERC reports because they cover a longer time period and include more detailed 

reports, allowing for more careful classification of the event categories.  

 There are 933 event reports in the 1984-2006 NERC records. In some of these 

reports, multiple entries from different organizations refer to a single large blackout. 

For example, the August 14, 2003 event spans six reports. In order to accurately 

record these blackouts, we combine these types of multiple reports into a single 

event record. After combining reports, 856 events remain. Of these, 418 events were 

both smaller than 300 MW and affected fewer than 50,000 customers. Since small 

event reporting is largely optional and spotty, this analysis focuses on the larger 

events. Table 2 lists descriptive statistics for these data with and without the smaller 

events.  

Disturbance categories and locations 

Disturbances recorded in the NERC data proceed from a wide variety of triggering 

events including natural disasters, storms, human error and mechanical failure. For 

this analysis we sort disturbances into the following primary cause categories: 

earthquakes, tornados, hurricanes or tropical storms, ice storms, lightning, wind or 

rain storms, other cold weather, fire, intentional attack, supply shortage, other 

external (not-human or equipment) event, equipment failure, operator error, voltage 

reduction and calls for voluntary demand reduction (the latter two are not blackouts, 

as discussed below). Some records indicate multiple causes, and are thus put into 

multiple categories. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC 09-01                                            www.cmu.edu/electricity 

9 

 Some events were initiated by a natural cause, such as lightning, but grew through 

a set of cascading failures. Unfortunately, it is difficult to isolate with certainty all 

cascading failures in these data. Some of the NERC reports give sufficient detail to 

identify which events are clearly cascading failures, but many lack sufficient detail 

to determine the extent to which dependant events precipitated from the natural- or 

human-initiated disturbances. This makes it difficult to calculate precisely the total 

impact of cascading failures. For example, many reports describing blackouts 

initiated by lightning do not describe the sequence of events in detail, which could 

obscure a dependant sequence of switching events worsening the resulting blackout. 

Still assuming that most large cascading failures are included in the NERC data, 

these data allow us to calculate a rough upper bound on the historical impact of 

cascading failures. 

To better understand the geographic distribution of the events, we divide the 

records into those located in the West, Northeast (NE), Midwest (MW), Southeast 

(SE), Texas (ERCOT) and Hawaii (3 events). Figure 1 shows the relative frequency 

of blackouts in each cause category, and in each region. This figure shows that, for 

example and as expected, hurricanes and tropical storms are major sources of 

blackouts in the Southeast and Texas, but not in other regions. Table 3 provides the 

category results in tabular form.  

Data filtering 

In order to ensure the reliability of this trend-analysis, the data are filtered in several 

ways. First we remove the 102 events in the “voluntary reduction” and “voltage 

reduction” categories since these do not generally disrupt electricity service and 

reporting may be unreliable. We also remove the events that have no recorded size 

(207 events). The term blackout is hereafter used to refer to the remaining 547 
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events, which did result in service interruption. 258 of these have recorded sizes of 

300 MW or greater. 304 are recorded to affect 50,000 or more customers. Second 

some of the records include event size in either MW or customers, but not both. Of 

the 258 blackouts that are listed as 300 MW or larger, 65 do not report the number of 

customers affected. From the text associated with these reports, there is no reason to 

believe that these events actually affected zero customers. In fact in several cases the 

DOE data do show the number of customers affected, where NERC reports do not, 

indicating that the empty value is not an indication of zero customers affected.  

Similarly, of the 304 blackouts specified to be larger than 50,000 customers, 73 do 

not include the size in MW. To estimate the missing size data, the missing MW or 

customer entries were filled according to the US average customers per MW, based 

on 2006 US DOE Energy Information Agency (EIA) data (300.4 customers per 

MW).1 Replacing missing data brings the number of blackouts larger than 300 MW 

to 307 and those larger than 50,000 customers to 382.  

 Finally, to avoid underestimating the importance of older blackouts, measured as a 

percent of demand or customers, we adjust event sizes to control for demand growth 

and an increase in the total number of customers. This is done by scaling sizes in 

customers to reflect population growth (from US census data) and by scaling sizes in 

MW to reflect the annual electricity demand (net electric energy generation from 

DOE EIA data). Specifically, we scale the data to reflect year-2000 customers and 

year-2000 MW using the same approach that would be used to adjust for inflation in 

financial calculations. Given annual demand (Dy) and population (Py) data, 

Equations (1) and (2) give the adjusted size in MW (SMW’) or customers (Scust’).  

                                                           
1 The value of 300.3 customers per MW comes from taking the EIA reported number of electricity customers in 2006 (140.4 

million) and dividing by the electricity demand in 2006 (4.0938 million MWh/8760 hours). 
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  SMW ' ! SMW
D2000

Dy

 (1) 

  Scust ' ! Scust
P2000

Py

 (2) 

The choice of 2000 as the base year was arbitrary. Choosing a different year would 

have little to no effect on the outcomes in this paper, since the result is merely to 

change the numerator in Eqs. (1) and (2), thus affecting all event sizes equally. 

 This scaling had several minor effects on the data. The adjusted size of blackouts 

before 2000 increases and the sizes of blackouts after 2000 decreases. The adjusted 

size of a 300 MW blackout in 1984 becomes 498 MW, whereas the size of a 300 

MW blackout in 2006 becomes 279 MW. After this adjustment the number of 

blackouts larger than 300 (year-2000) MW increases by 10 to 317, and the number 

affecting 50,000 or more year-2000 customers decreases 373. Table 2 describes the 

number of events before and after scaling in detail. 

Customer interruption frequency (SAIFI) in the NERC data 

Given the number of customers interrupted in each blackout, it is possible to 

calculate the total number of customer interruptions and thus infer the fraction of all 

blackouts reflected in these data. From the total number of customer interruptions, 

one can calculate the apparent System Average Interruption Frequency Index 

(SAIFI), a common reliability measure used in the electricity industry. After 

adjusting for demand growth, and dividing by the number of electricity customers in 

the US in the year 2000, the apparent SAIFI from the NERC data is: 

SAIFI =
141 M interruptions

(23 years)(128 M customers)
! 0.05    (3) 
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According to La Commare and Eto (2005) SAIFI in the United States is 

approximately 1.2 or 1.3. Thus the disturbances in the NERC data represent about 

4% of all customer interruptions recorded in the national SAIFI numbers. However, 

due to reporting requirements, the vast majority of large events is likely to be 

included in these data, so in the majority of the analysis that follows we separate out 

the large events.  

Regarding the utility of the NERC data for trend analysis 

 The NERC DAWG data certainly contain inaccuracies and are far from a complete 

record of all blackouts between 1994 and 2006. While the EIA and NERC data agree 

in many respects, the reported blackout sizes frequently differ somewhat. 

Submission of disturbance data to NERC was largely voluntary until 2007, when 

mandatory reliability rules came into effect in the United States. Submission of 

disturbance data to DOE is required, but some argue that DOE has not sufficiently 

enforced its reporting requirements to ensure complete data accuracy. Recent 

discussions regarding the creation of mandatory reliability rules may explain an 

observable increase in the frequency of small event reports (see Figure 2). Regarding 

the completeness of the data, some data are certainly missing from the records. For 

example there are no records for March-November 1998, which is certainly a data 

collection error. The 1998 data are dropped from the analysis of Hypotheses 1 and 2, 

where a bias could result from the data collection error. The remaining hypotheses 

are unaffected by this issue. 

 Despite some inaccuracies, there are good reasons to believe that the data are 

sufficiently accurate to support the trend analyses described in this paper. Even if 

there has been an uptick in the reporting of small disturbances (those less than 300 

MW, for example) very large blackouts are very public events. It is difficult for a 



Carnegie Mellon Electricity Industry Center Working Paper CEIC 09-01                                            www.cmu.edu/electricity 

13 

utility to neglect the reporting of large blackouts. It is precisely for this reason that 

we filter the data for large events, a precaution that some past authors have not taken 

when studying these data (e.g., Simonoff et al., 2007). Also, even if there is a change 

in reporting over time, there is no reason to believe that this would have any effect 

on the results pertaining to Hypothesis 2-5. In these cases we are looking at size, 

monthly, hourly, and duration trends, which would be useful even if the data that 

exist represent a sparse subset of the actual history of all blackouts.  

3. Trends in the blackout data 

In the introduction we posit five hypotheses regarding trends in the blackout data. 

This section describes the methods and results that inform our conclusions regarding 

these trends. The first three sub-sections focus on time-trends in the data and the 

remaining two focus on the power-law trend and the relationship between blackout 

size and restoration time.  

Hypothesis 1: Blackout frequency has decreased with time (reject) 

The past 25 years have been a period of enormous technological growth. At least 

some of this growth has affected the electricity industry through increasing 

information technology in the control and data collection equipment that facilitate 

the uninterrupted flow of electricity between suppliers and consumers. It thus seems 

reasonable to hypothesize that there is an observable reduction in the overall 

frequency of large blackouts in the NERC data.   

 Figure 2 shows the number of blackouts per year in various size-categories for 

blackouts affecting more than 50,000 customers, after adjusting event sizes for 

population growth. The data show a fairly clear increase in the annual blackout 

frequency after 1998. It appears that some data are missing for 1998, as no events 
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are recorded for February through November. The median frequency before 1998 is 

11.5 events/year, whereas it is 23.5 events per year after 1998. Amin (2008) and 

Simonoff et al. (2007) both note this increase over time. But a good portion of this 

increase occurs within the smaller event categories. The observed increase could be 

the result of increased reporting of smaller blackouts. The increase in the frequency 

of events in the “wind/rain” category may indicate that utilities are increasingly 

likely to report smaller weather-related events in recent years. To control for this 

potential increase in reporting we focus on events that are greater than 300 MW after 

filling in missing values and adjusting for demand growth. Also we remove all 

events that result from extreme natural events (hurricanes, tropical storms, ice 

storms, earthquakes, and tornadoes). The resulting blackout frequency is shown in 

figure 3.  

 Several statistical tests were employed. Table 4 shows the results of Kolmogorov-

Smirnov (K-S) t-tests, which test the hypothesis that two sets of non-Gaussian data 

(event frequency before and after the mid-point year) come from the same 

probability distribution. Table 4 also shows the results of correlation tests between 

blackout frequency and time. Each test is run on the data before and after adjusting 

for demand and population growth. It is important to note that this treatment 

decreases the number of recent blackouts above a given threshold and increases the 

number of older blackouts, thus increasing the likelihood that we would find an 

apparent decrease in the frequency of large blackouts. Also, because of the 

apparently missing reports for 1998, the 1998 data are not included in the statistical 

tests. Adding the 1998 data back in to the data set does not substantially change the 

conclusions for any of the tests described in Table 4. In most cases a statistically 

significant (at the !=0.05 level) increase in event frequency is apparent. In no case is 
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a statically significant increase apparent, even after removing blackouts caused by 

natural disasters (earthquakes, ice storms, tornadoes, and hurricanes/tropical storms).  

 There are a number of plausible explanations for this observation. Firstly the 

observed increase is certainly not an artifact of the data filtering that we performed 

(filling in missing customer/MW counts and scaling the data to adjust for increases 

in demand and population increases). Table 4 shows these data before and after these 

treatments, both of which show roughly the same trend (no apparent increase in 

frequency). Filling in missing values increases the number of events per year slightly 

(from 10.2 to 12.3 blackouts "300 MW per year), but does not result in a decrease 

by any measure. Scaling to adjust for demand growth reduces the number of recent 

large blackouts, and increases the number of older large blackouts. This scaling 

ensures that observed frequency changes are not the result of increases in demand 

and population growth. Secondly, it is important to note that there is some evidence 

that reporting of small events may have increased in recent years (since 2000), 

perhaps as a result of increasing federal oversight of electricity reliability. Figure 2 

shows a notable increase in the number of events in the 50,000 to 300,000 customer 

range, which could be the result of increased reporting. This may explain the 

dramatic increase in blackout frequency reported by Amin (2008). However, as 

discussed earlier, it is more difficult to avoid reporting very large blackouts. Given 

that it is difficult to not report large blackouts and given that DOE reporting 

requirements have not changed significantly for the largest events, it is less likely 

that reporting of large blackouts has increased over time.  

 To conclude we do not find sufficient evidence to conclude that blackout frequency 

is increasing in time. On the other hand there is sufficient evidence to reject our 
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initial research hypothesis that blackout frequency is decreasing in time. Despite 

imperfections in the data, Hypothesis 1 can be safely rejected.  

 

Hypothesis 2: Blackout frequency does not change seasonally (reject) 

In this section we test the hypothesis that blackout frequency does not change 

seasonally. To do so, we estimate monthly blackout frequencies using 3-month 

centered rolling-average windows. Blackout frequency increases substantially during 

the late summer and mid-winter months, though due to the large variance among 

years, only some of the statistical tests show that the seasonal trends are significant 

(Table 5). Removing hurricanes and tropical storms increases the significance of the 

results, since these have a different seasonal pattern relative to other seasonal 

patterns. Since the differences between the July and October averages are 

significantly different, after removing hurricanes, we can reject the hypothesis and 

conclude that blackout risk does change with time-of-year, though with the caveat 

that the trend appears to be well correlated with the seasonal nature of storms. Non-

storm-related risk appears to be nearly constant through the year.  

Hypothesis 3: Blackout probability does not change with time-of-day (reject) 

In this section we test the hypothesis that blackout probability does not change with 

the time-of-day. Figure 5 shows a centered rolling 3-hour hour average blackout 

frequency for all 24 hours in the day, after excluding the events that do not have a 

start time recorded. As with the seasonal data, a rolling average is used to smooth 

out some of the noise that results from the relatively small data set. Blackout 

probability increases substantially during the peak hours (Figure 5). Blackout 

frequency is 3.9 times higher during 15:00-19:00 compared to 23:00-2:00. A K-S 

test shows that this difference is significant (P < 0.01). Storm activity typically 
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increases during the mid-afternoon hours, which clearly accounts for some of the 

increase. Figure 5 shows a substantial increase in weather related events during the 

mid-afternoon hours. Alternatively (or perhaps additionally), the increase may be the 

result of power networks being more stressed during mid-afternoon hours, indicating 

proximity to critical points at which blackout probability increases sharply (Carreras 

et al., 2004; Liao et al., 2004; Dobson et al., 2007).  

Hypothesis 4: Blackout sizes follow a power-law probability distribution (support) 

The sizes of large blackouts in the United States follow a power-law probability 

distribution (Carreras et al., 2000; Talukdar et al., 2003; Carreras et al., 2004). 

International blackout data also show a power-law size-frequency relationship 

(Holmgren and Molin, 2006; Dobson et al., 2007), indicating that this relationship is 

fundamental to the structure of power grids in developed countries. (Power grid 

failures in many less developed nations have substantially different dynamics. The 

results and methods discussed in this paper may not be directly applicable to less 

developed nations.) Using a goodness of fit measure, based on the KS statistic, 

Clauset et al. (2007) find that the blackout data fit a power-law distribution with 

“moderate” confidence.  

 Power-law probability distributions come in a number of forms, but one of the 

most common is the Pareto distribution. Because the Pareto distribution naturally 

accounts for data with a fixed minimum value, it is a logical distribution for fitting 

the blackout data. The cumulative distribution function (cdf) for a Pareto-distributed 

random variable x with minimum value xmin, can be written as follows: 

P(x " X) ! 1#
xmin

X
$%
&%

'%
(%

k

   (2) 

where k is the scaling exponent and X is any real value in [xmin,#]. The pdf is: 
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P(x ! X) !
kxmin

k

X k)1    (3) 

and the expected value (E) is: 

E[x]!
kxmin

k #1
, k *1

+, k ,1

-%
.%
/%

0%/%
   (4) 

To find the parameters, xmin and k, that provide the best fit to the blackout data we 

use the method described in Clauset et al. (2007), which uses least squares 

estimation to find the best fit exponent and the KS statistic to find xmin. For the 

blackout data with size in year-2000 MW, we find a scaling exponent (k) of 1.2 

(±0.1) with xmin = 1012 (±340) MW. The data with sizes in year-2000 customers 

give a scaling exponent of 1.14 with xmin = 291,000 customers. Both fits give KS P 

values of 0.84, indicating that the fit between the Pareto distribution and the blackout 

data is quite good. This P value is higher than that reported by Clauset et al. 

(P=0.62), perhaps as a result of our larger data set. Comparing this to a minimum-

value Weibull distribution whose cdf has the form: 

P(x " X) ! 1# e
#

X#xmin

a
$
&1

'
(2

b

  (5) 

shows the clear superiority of the power-law fit. As shown in Table 6, when the 

small events are included in the Weibull fit the KS P value is less than 0.05. In all 

cases the power-law provides a vastly superior fit than the Weibull, indicating that 

one can reject the hypothesis that the data are exponentially distributed with 

confidence. As shown in Figure 6, the Weibull assumption fails to predict the size of 

the larger events, thus indicating that the data have a power-law tail.  

 While the size data in MW or customers fits well with a power-law probability 

distribution, blackout durations do not (see Table 6). The power-law fit for the 
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duration of the 223 events with known durations, one hour or longer, and sizes over 

300 MW (after scaling) has a KS P value of 0.001, whereas the Weibull fit provides 

a good fit to the data with P = 0.83. The size distribution for the longest events (the 

events over 100 hours in duration, N=24) falls off sharply, as indicated by the higher 

exponent in the power-law fit to the duration data (Table 6). 

 We conclude that there is strong statistical support for the power-law relationship 

between blackout size and frequency. There is virtually no chance that the data come 

from a process with an exponential probability distribution function. This is true, 

even after controlling for demand and population growth. Also, the scaling exponent 

is near the critical value, k = 1, at which the expected value of the distribution 

becomes infinite, indicating that large events contribute substantially to overall 

blackout risk.  

Hypothesis 5: Blackout sizes and restoration times are positively correlated (reject) 

Due to difficulties associated with starting large power plants without off-site power, 

restoration can take many hours, even if no equipment damage has occurred. Many 

large blackouts require extended restoration periods. It can take days or weeks to 

restore customers after the losses from a natural disaster. It thus seems reasonable to 

expect to find correlation between the size of a blackout and its duration.  

To estimate blackout duration we identified those blackout reports that included 

both the time at which the blackout began and the time it took to restore service (595 

of 865 events). Blackout restoration is typically an incremental process. Some of the 

reports indicate this by giving a time at which restoration began and a time at which 

restoration completed. When both initial and final restoration times are given, we 

record the duration by the final time.  
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Surprisingly we do not find a statistically significant correlation between event 

size and duration (see Table 7 and Figure 7). In a few cause-categories, there is a 

significant positive correlation between size and duration (lightning, wind/rain, and 

“other external cause”), but in some other categories a weak (insignificant) negative 

correlation exists resulting in no significant correlation for the data set as a whole.  

It is possible that the lack of a significant correlation is at least in part a result of 

the difficulties associated with measuring, and incomplete reporting of, duration. To 

accurately measure blackout duration it would be best to perform a weighted average 

of the restoration time over all customers. The existing reports are not sufficiently 

detailed to support this measurement. While we can conclude that the data do not 

show a significant correlation, we cannot describe in detail, from these data, the 

relationship between blackout size and duration. 

Additional Hypotheses 

Numerous additional questions about blackout trends remain. Some of the most 

important questions regard patterns in overall blackout risk (frequency times size) 

and the frequency of cascading failures. In particular, it would be useful to 

investigate the following additional hypotheses: 

Hypothesis 6: At least one half (or some other percentage) of large blackouts are 

caused primarily by cascading failures. 

Hypothesis 7: The sizes of the largest blackouts are increasing with time. 

Unfortunately, due to the nature of the data that are available, it is difficult to address 

Hypotheses 6 and 7 with confidence. While NERC provides fairly detailed reports 

on the largest events in its records, most of the reports do not provide sufficient 

detail to determine the extent to which a given blackout was caused by cascading 

failures. Hypothesis 7 is of particular importance, as many have conjectured that the 
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size of the August 14, 2003 event was larger than past events, at least in part, 

because the electricity industry is pushing the existing transmission capacity closer 

to its physical limits over time. It is hard to support this conclusion from the data. 

The large variance in blackout sizes that results from the power-law probability 

distribution makes it difficult to discern trends in event sizes. Figure 8 shows the 

sizes of the largest annual blackouts over the period of analysis. It is perhaps useful 

to note that the 1965 blackout is nearly as large as the 2003 blackout, after adjusting 

for population growth. According to the Federal Power Commission report (1967), 

the 1965 blackout affected about 30 million people, or 15% of the US population. 

The 2003 blackout affected 17% of the US population. 

 

Summary of trends found in the blackout data 

To summarize, we find (A) that blackout frequency has not decreased from 1984 

to 2006, (B) that blackouts are substantially more frequent in the summer and winter 

and (C) during mid-afternoon hours, (D) that large blackouts occur much more 

frequently than would be expected from a exponential statistics, and (E) that there is 

no apparent correlation between blackout size and restoration time. 

4. Relevance of trends to policy problems 

Assuming that the trends observed in the NERC blackout data accurately represent 

actual trends in the electricity industry, they can have a significant impact on 

investment and policy choices in the electricity industry. This section aims to show 

that a careful consideration of observed blackout trends can lead to better decisions, 

which in turn should increase reliability and efficiency. Ignoring observed trends 

could result in significant mis-allocation of scarce resources.  
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In this section we make four primary modeling assumptions. Firstly we assume 

that the trends observed in the NERC data represent trends that actually exist in the 

time-series of blackouts in North America. As discussed in Section 2, these data are 

not without error, but the trends that we have found show sufficient statistical power 

to be useful for the types of analysis described in the following. Assuming that 

industry members collect more reliable data going forward, the utility of the types of 

decision-making procedures that follow will increase. Secondly we assume that 

blackout size and blackout duration are independent random variables. While we 

cannot sufficiently observe the processes that generate blackouts (at least not from 

the data reported on in this paper) to verify this assumption with certainty, the lack 

of a significant correlation between blackout size and duration provides some 

evidence that this assumption is a reasonable approximation. Again it is important to 

note that blackout duration is a difficult quantity to measure or use effectively in 

decision analysis because blackout restoration is incremental and good records are 

often not kept or reported regarding the amount of load restored over time. Thirdly 

we assume that blackout costs scale linearly with blackout size in MW. If blackout 

cost is a linear function of unserved energy (MWh) and duration is an independent 

random variable, then assumption three follows from assumption two. Finally, we 

assume that blackout risk (probability times cost) remains constant over time. As 

reported in Section 3, the data indicate that the frequency of large blackouts is not 

decreasing in time. Unless emerging reliability standards, or other industry changes 

significantly change the underlying processes that generate blackouts, this 

assumption is supported by the NERC data.  
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It is important to note that the calculations that follow are not intended to 

recommend specific, immediate policy changes, but rather to illustrate how blackout 

trends can be used in the analysis of policy trends.  

Relevance of the time-of-day and time-of-year trends 

Because blackout risk changes with time-of-day and time-of-year, it is rational to 

focus the bulk of blackout risk reduction efforts on peak periods. For example, 

consider a utility that wants to compare two policy options regarding an increase in 

operator staff to reduce blackout risk2. Under Option 1 it deems that by doubling the 

number of on duty operators during all hours it can reduce the blackout probability 

at all hours by 50%, without changing the blackout size distribution. Let the annual 

cost of this option be C1. Under Option 2 it deems that it can reduce blackout 

frequency during the highest risk hours by doubling is operator staff during only 

these hours. Let us assume that it can increase its staff during 50% of all hours for 

50% of C1. The cost of Option 2 is thus C2 = 0.5C1. Let Pr(B|h) and Pr’(B|h) 

represent the probability of a blackout at hour h before and after the policy change, 

cb be the average per MW blackout cost and E[S] be the expected value for the 

utility’s blackout size distribution. Assuming that blackout size and blackout 

probability are independent, the expected one-year benefit of the policy P is: 

E[VP ] ! cb Pr(B | h)# Pr '(B | h)3 4E[S]
h!1

8760

5   (6)  

Assuming that cb and E[S] remain unchanged by the increase in operating staff, 

Option 1 will reduce blackout costs in the utility’s service area by 50% ( E[V1] = 0.5 

                                                           
2 It is notable that most electric utilities, and other system operators, increase operations staff during peak periods and 

daytime hours, largely as a result of increased blackout risk. The calculations provided here illustrate that this policy is 
reasonable given trends observed in the data. This result is not intended to argue that increasing operating staff beyond an 
already increased daytime workforce would significantly decrease blackout probabilities. The calculation given here illustrates 
how the available trends can be combined with utility-specific information (eg. assumptions about affects of increased 
operating staff) to compare the benefits and costs of decisions. 
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E[V0] ). Option 2 however will not reduce risk as much, but does so during peak 

periods only. If Option 2 reduces blackout probability by 50% during the 12 highest 

risk hours (7am-7pm) given the time-of-day blackout frequency trend shown in 

Figure 5, Option 2 would reduce overall blackout costs by 34% ( E[V2] = 0.34 E[V] 

). The utility can obtain most of the desired risk reduction with half the cost by 

doubling staff during only peak periods. Similarly, the monthly blackout data can be 

used to focus risk reduction efforts on seasons with the highest risk. 

Relevance of the power-law relationship between blackout size and frequency 

The existence of a power-law probability distribution in the blackout size data is 

important because it indicates that large events are substantially more common than 

one would predict from exponential distributions such as a Gaussian or Weibull, 

which are commonly used in engineering reliability analysis. The end result is that a 

blackout of any size (up to the extent of the entire network) has a significant, non-

zero probability. More practically, this result indicates that, if costs scale linearly or 

super-linearly with blackout size in MW, blackout mitigation efforts should focus on 

the largest events in nearly equal proportion to the smaller events.  

Another effect of the power-law distribution is apparent when calculating the size 

of a 100-year blackout, using methods commonly applied to storm impact 

assessment. Given that the sizes of very large blackouts (with sizes greater than 1000 

MW, where the power-law frequency distribution fits the data well) follow a Pareto 

distribution, the probability of obtaining at least one blackout with size S or larger 

being among a set of n randomly selected very large blackouts is: 

Pr(max(s) 6 S | n) ! 1# Pr(s , S | n) ! 1# 1#
1000

S
$
&1

'
(2

k$

&
1

'

(
2

n

      (7) 



Carnegie Mellon Electricity Industry Center Working Paper CEIC 09-01                                            www.cmu.edu/electricity 

25 

Assuming the number of blackouts in a given year follows a Poisson distribution and 

that blackout frequency and blackout size are independent, the probability of 

obtaining a blackout of size S or larger in a given year (year y) is 

Pr(max(s) 6 S | y) ! 1# 1#
1000

S
$
&1

'
(2

k$

&
1

'

(
2

n$

&
1
1

'

(
2
2n!1

+

5 7ne#7

n!
$
&1

'
(2

       (8) 

To obtain the size of the 100 year blackout (S100) we find S such that Pr(max(s)"S|y) 

= 1/100, given the observed arrival rate of $ = 5.3 very large blackouts per year, and 

the scaling exponent (k = 1.2) obtained in Section 3 (Hypothesis 4). Solving (8) 

numerically with these parameters gives S100 = 186,000 MW. By comparison, 

according to DOE/EIA data, the peak demand (EIA: "Net Internal Demand'') for the 

continental US in 2000 (the base year for the size measures) was 681,000 MW. 

Thus, if the observed statistical pattern holds for very large blackouts, and if the US 

were to see a 100-year blackout next year, it would interrupt about one quarter of all 

electricity service in the continental US. This result is very sensitive to the exponent 

on the power-law distribution (k). Decreasing k to 1.15 gives S100 = 233,000 MW. 

The power-law relationship between size and probability can significantly affect 

the expected size of large blackouts, which often factors into the evaluation of 

benefits associated with risk management decisions, such as in the example decision-

analysis calculations that use Eq. 6. Specifically, the power-law relationship can lead 

to a significant under-estimation of the value of policies or technology that could 

reduce the likelihood of very large blackouts. Let us assume that one would like to 

evaluate a technology that is expected to reduce the number of blackouts 1000 MW 

or larger by one half to $’ = 5.3/2 = 2.7 per year. We can estimate the annualized 

value of this decision by finding: 

E[VP ] ! cb (7 # 7 ')E[SS61000 ]       (9) 
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For data that come from exponential distributions, such as the Gaussian, it is 

reasonable to estimate an expected value by calculating the mean. The mean of 

power-law distributed data does not provide a good estimate of the expected value. 

For one, the variance in a power-law system is so large that random samples from a 

power-law process are likely to produce widely varying statistics. The mean size of 

the 122 blackouts larger than 1000 MW is 3700 MW, however the uncertainty in this 

sample mean is very high. Bootstrap methods provide a 95% confidence interval for 

the sample mean of [2900, 5500]; the high variance being a result of the variance in 

the power-law distribution. If we use the power-law statistic to get the expected size 

by integrating the pdf up to a max blackout size of 700 GW, we get E[S] = 4400 

MW, which is substantially higher than the sample mean (though within the 

bootstrap confidence interval). If one merely uses the sample mean to estimate the 

value of the technology change, one obtains E[Vp] = 10,000 cb. From the power-law 

distribution, the expected value is E[Vp] = 12,000 cb. By using the sample mean as an 

estimate of the process mean one would undervalue this technology by about 20%. If 

one ignored the power-law altogether, and assumed that blackout sizes follow 

exponential statistics, one would undervalue this decision by much more than 20%. 

5. Conclusion 

From the available records of large blackouts in North America between the years 

1984 and 2006 we find (1) that the frequency of large blackouts in the United States 

has not decreased over time, that there is a statistically significant increase in 

blackout frequency during peak hours of the day (2) and seasons of the year (3), (4) 

that there is strong statistical support for a power-law statistical relationship between 

blackout size and frequency, and finally (5) that blackout sizes and blackout 
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durations are not correlated. We find these trends to hold even after controlling for 

increasing demand and population and after eliminating small events, for which the 

data may be skewed by spotty reporting. Several example calculations show that 

these trends can have a significant effect on the net benefit of decisions within the 

industry.  

 Important unanswered questions remain. For example, the large annual variance in 

the size of the largest blackouts makes it infeasible to draw conclusions regarding 

changes in blackout sizes over time. Also, it would be useful to know the percentage 

of blackouts that are cascading failures. Unfortunately, most midsize events have 

insufficient detail in the reported characterizations to determine whether cascades 

played a role. Considering the importance of the implication for blackout mitigation 

techniques and technologies, we recommend that FERC and NERC place priority on 

collecting more detailed, accurate blackout data in North America, particularly 

focusing on identifying the extent to which particular events were exacerbated by 

cascading failure. 
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Tables!and!Figures!for!“Large!Blackouts!in!North!America:!
Historical!trends!and!policy!implications”!
!
!

TABLE 1: THE 15 LARGEST NORTH AMERICAN BLACKOUTS, 1984-2006 (NERC) 

 Date Location MW Customers Primary cause 
1 14-Aug-2003 Eastern US, Canada 57,669 15,330,850 Cascading failure 
2 13-Mar-1989 Quebec, New York 19,400 5,828,000 Solar flare, cascade 
3 18-Apr-1988 Eastern US, Canada 18,500 2,800,000 Ice storm 
4 10-Aug-1996 Western US 12,500 7,500,000 Cascading failure 
5 18-Sep-2003 Southeastern US 10,067 2,590,000 Hurricane Isabel 
6 23-Oct-2005 Southeastern US 10,000 3,200,000 Hurricane Wilma 
7 27-Sep-1985 Southeastern US 9,956 2,991,139 Hurricane Gloria 
8 29-Aug-2005 Southeastern US 9,652 1,091,057 Hurricane Katrina 
9 29-Feb-1984 Western US 7,901 3,159,559 Cascading failure 

10 4-Dec-2002 Southeastern US 7,200 1,140,000 Ice/wind/rain storm 
11 10-Oct-1993 Western US 7,130 2,142,000 Cascading failure 
12 14-Dec-2002 Western US 6,990 2,100,000 Winter storm 
13 4-Sep-2004 Southeastern US 6,018 1,807,881 Hurricane Frances 
14 25-Sep-2004 Southeastern US 6,000 1,700,000 Hurricane Jeanne 
15 14-Sep-1999 Southeastern US 5,525 1,660,000 Hurricane Floyd 
Italics indicate an estimated value, based on a US average of 300 customers per MW (EIA, 2006). 

!
TABLE 2. DESCRIPTIVE STATISTICS FOR THE NERC DISTURBANCE DATA, 1984-2006 

 All events ! 0 
cust./MW 

 
! 300 MW 

 
! 50k cust. 

!300 MW or 
!50k cust. 

Total # of events 856 278 321 438 
# of blackouts 547 258 304 406 
# after filling missing data 547 307 382 419 
# after adjusting for growth 547 317 373 413 
Mean size in MW 524 1,508 947 987 
Median size in MW 86 634 300 385 
Standard deviation in MW 2,396 4,034 3,648 3,285 
Mean size in cust. 164,483 321,984 430,585 317,372 
Median size in cust. 1,323 85,228 149,500 94,643 
Standard deviation in cust. 689,815 1,106,958 1,075,888 939,638 

!
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TABLE 3. DESCRIPTIVE STATISTICS FOR EVENT CATEGORIES  

 % of 
events 

Mean size in 
MW 

Mean size in 
customers 

Wind/rain 31.4 679 235,840 
Equipment failure 19.9 767 248,643 
Ice storm 11.1 1,664 431,184 
Hurricane or Tropical Storm 10.1 2,684 912,870 
Other cold weather 8.8 1,045 271,924 
Lightning 8.8 794 200,617 
Operator error 8.5 1,226 358,440 
Fire 5.6 972 294,994 
Voltage reduction 3.9 437 1,162,860 
Other external cause 3.6 1,518 823,691 
Tornado 3.6 721 227,073 
Supply shortage 2.3 600 896,432 
Voluntary reduction 2.3 239 966,645 
Earthquake 1.6 1,124 526,260 
Intentional attack 0.7 2,154 165,000 
This table includes only events larger than 50,000 customers. Some of the event sizes were 
interpolated from the size in customers or MW. 

!
!

TABLE 4. STATISTICAL TESTS FOR THE HYPOTYESIS THAT BLACKOUT FREQUENCY IS 
DECREASING WITH TIME. 

 
  Correlationb  ‘84-‘95 ‘96-‘06 P from 
Data N 8 P Mediand Median K-S test 
650k cust. (raw)a 321 0.68 0.000 11 20 0.012 
650k y2kb cust.  373 0.78 0.000 11 23 0.003 
6100k cust. (raw) 214 0.62 0.002 7 12 0.012 
6100k y2k cust. 265 0.69 0.000 9 16 0.047 
6300 MW (raw) 278 0.60 0.003 10 15 0.047 
6300 y2k MW 317 0.67 0.001 11 17 0.003 
6300 y2k MW* 248 0.60 0.003 9 13 0.147 
6500 MW (raw) 180 0.57 0.006 7 8 0.147 
6500 y2k MW 214 0.51 0.015 8 12 0.047 
a Data marked as “raw” are presented before any scaling or post-processing on the data, aside from 
combining records from the same event.  
b Correlation measures the relationship between the year and the number of blackouts during that year. 
Data from 1998 were dropped due to an apparent reporting error. 
c “y2k” sizes indicate that the data were scaled to account for demand or population growth using 2000 
as a base year.  
d Medians indicate the median events per year, not including the 1998 data. 
* Not including extreme natural events (ice storms, hurricanes/tropical storms, earthquakes, tornadoes) 
!
!
!
!
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TABLE 5. STATISTICS FOR SEASONAL TRENDS 
 Median blackouts per month. P values from K-S test comparing 

each season to the one previous, shown in parenthesis 
Data set Dec. – Feb. Mar. – May. Jun. – Aug. Sep. – Nov. 
"300 y2k MW, all blackouts 1.30 (0.59) 1.00 (0.98) 1.42 (0.36) 0.87 (0.10) 
"300 y2k MW, non-hurricanes 1.30 (0.20) 1.00 (0.98) 1.29 (0.36) 0.65 (0.04) 
"50k y2k cust. all blackouts 1.48 (0.10) 1.29 (0.84) 1.57 (0.84) 1.07 (0.20) 
"50k y2k cust. non-hurricanes 1.48 (0.00) 1.29 (0.84) 1.42 (0.84) 0.77 (0.01) 
!

TABLE 6. BLACKOUT SIZE FIT STATISTICS 

  Power-law fit Weibull fit 
Data xmin k KS P a b KS P 
y2k MW 300 0.90 0.13 907 0.625 0.04 
y2k MW 500 0.97 0.12 1284 0.652 0.03 
y2k MW 1016* 1.19 0.76 1775 0.635 0.19 
y2k cust. 50000 0.71 <0.001 245103 0.643 0.03 
y2k cust. 100000 0.89 0.07 302801 0.633 0.12 
y2k cust. 291071* 1.12 0.68 559498 0.661 0.32 
duration (hrs) 1 0.58 0.001 73.5 0.844 0.83 
duration (hrs) 100 1.77 0.47 93.9 1.012 0.84 
* xmin fit that results from the method described in Clauset et al. (2007) 

!

!
TABLE 7. CORRELATION TESTS FOR THE HYPOTHESIS THAT LARGE BLACKOUTS RESULT IN 

LONG RESTORATION TIMES 
Data N Corr. coef.  

(%) 
P-value 

"300 y2k MW. 223 -0.019 0.78 
"50k y2k cust. 267 0.040 0.52 

!
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Figure 1. Percent of disturbances that fall into various initiating-event categories, for events larger than 
50,000 customers, 1984-2006. The number of events is shown in parenthesis. The totals are greater than 
100% because some records fall into multiple categories.  
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Figure 2. The annual number of blackouts affecting more than 50,000 customers, after adjusting for 

population growth. The lower graph shows the relative frequency of event categories over time, which 

shows an increase in the Wind/Rain category. Note that the increase in overall frequency is coincident with 

an increase in the relative frequency of naturally-caused events. This may be indicative of an increase in the 

reporting of smaller, weather-related events.  
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Figure 3. The number of large blackouts per year after removing small events, adjusting for demand 

growth, and removing extreme natural events. Event sizes are measured in year-2000 MW. 
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Figure 4. The seasonal frequency of large blackouts. Includes only events larger than 300 MW after 

adjusting for demand growth.  
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Figure 5. Blackout frequency as a function of time-of-day. The vertical axis shows the average number of 

events per hour, using 3-hour (centered) rolling averages to smooth out some of the noise in the data. 
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Figure 6. The complementary cumulative probability distribution of blackout sizes in MW (left) customers 

(right). While the Weibull distribution provides a good fit for predicting the frequency of small events, it 

grossly underestimates the probability of large blackouts. 
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Figure 7. Blackout duration vs. blackout size in MW for events larger than 300 MW (after scaling). The 

two variables are almost perfectly uncorrelated (see Table 7 for statistics). The log-log scale is used here 

for clarity—the linear-scale figure shows a similar relationship. 
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Figure 8. The sizes of the largest blackouts annually. As a point of reference, the 1965 and 1977 blackouts 
were 64 GW and 17 GW after scaling for demand growth. 
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