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Abstract: Cascading failures in electrical power networks often come with 
disastrous consequences. A variety of schemes for mitigating cascading failures 
exist, but the vast majority depend upon centralised control architectures. 
Centralised designs are frequently more susceptible to communications latency 
and bandwidth limitations and can be vulnerable to random failures and 
directed attacks. This paper proposes a decentralised approach. We place 
control agents at each substation in a power network, each of which uses 
decentralised Model Predictive Control (MPC) to select emergency control 
actions. When making decisions, the control agents consider not only their own 
goals, but also the goals of nearby agents. Thus the agents act with Reciprocal 
Altruism (RA). Results from simulations of extreme cascading failures within 
the IEEE 300 bus test network indicate that this approach can dramatically 
reduce the average size and social cost of large cascading failures. Simulations 
also show that the bandwidth required for message passing is well within the 
limits of current technology. 
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1 Introduction 

Cascading failures are found in many, if not all, large network systems. Small failures in 
or attacks on financial markets, the internet, commercial air-traffic systems and electrical 
power grids occasionally initiate long chains of dependant failures. The results are  
often tremendously costly. As did the large North American blackouts of 1965 and 1977, 
the cascading failures in the North American (14 August) and Southern European  
(28 September) grids in 2003 spurred a wave of new interest into the mechanics of 
Dobson et al. (2005) and Carreras et al. (2002) and mitigation methods for cascading 
failures in power networks (You et al., 2004; Yang et al., 2006; Zima et al., 2005;  
de la Ree et al., 2005). Because of their complex discrete and continuous dynamics, and 
the relatively short time constants over which these dynamics can progress, cascading 
failures in power networks provide a challenging test case for mitigation strategies that 
could be useful in other infrastructures. 

Power grids, like most infrastructure systems, are operated by both decentralised  
and centralised controllers. The decentralised controllers (relays for example) work with 
local data to quickly make local decisions. The centralised controllers (human operators 
for example) work with larger data sets to make decisions along longer time horizons 
according to broader (global) goals. Sometimes local controllers with limited information 
do not, or cannot, make decisions that align well with global goals. For example, distance 
relays designed to interrupt fault current, and thus mitigate local risks in a power grid, 
can propagate a cascading failure, thus increasing global risk. The goal of this work is  
to develop decentralised control agents that gather information from their neighbours to 
make real-time decisions that are good with respect to the system as a whole. Such 
‘reciprocally altruistic’ agents would bridge the gap between high-speed, low-intelligence 
decentralised control systems and low-speed, high-intelligence centralised systems. 

This paper is organised as follows. Section 1 is this introduction. Section 2 describes 
a global Model Predictive Control (MPC) problem and shows that this paper can be  
used to mitigate cascading failures from a central location given perfect information. In 
Section 3 we present a general framework for describing optimising agents within a 
network, and use this framework to describe reciprocally altruistic agents. Section 4 
describes the specific changes needed to design reciprocally altruistic agents to solve the 
global cascading failure mitigation problem. The final two sections describe the 
simulation model, simulation results, and draw some conclusions. 

1.1 Centralised and decentralised cascading failure mitigation 

Numerous centralised methods for cascading failure mitigation exist. Wide Area Control 
Systems (WACS) or Special Protection Schemes (SPS) have been in development for 
many years, with limited adoption and some success in the electricity industry (Anderson 
and LeReverend, 1996; Zima et al., 2005). When well designed, a SPS can provide a 
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power network with automated stress responses that can arrest the spread of many 
cascading failures. SPS can enable a network to operate with smaller margins (Anderson 
and LeReverend, 1996; Makarov et al., 2005). However, if an SPS responds to stress 
with predetermined, non-adaptive, control actions it is possible that the actions can 
increase, rather than decrease, the size of a blackout. More recent WACS employ 
adaptive concepts, including an algorithm that uses correlation among generator phase  
angles to divide a grid into islands (You et al., 2004) and optimisation-based methods 
such as MPC (Larsson, 2005; Hiskens and Gong, 2005; Taylor et al., 2005; Shao and 
Vittal, 2005). 

Few of these adaptive, centralised approaches have been widely adopted. One 
potential explanation for this is that infrastructure networks in general, and power 
systems in particular, are inherently decentralised systems. When speed is important, as it 
is during a cascading failure, it is useful for the decision makers to be co-located with the 
sensors and actuators. This is largely a function of latency in internet communications, 
which has been shown to negatively affect some WACS (Stahlhut et al., 2008). 

Some emerging designs use decentralised controllers as a part of the overall design. 
Li et al. (2005) describe a “Strategic Power Infrastructure Defence” system that employs 
a hierarchical, multi-agent architecture. Ni et al. (2002) use a multi-agent approach to 
coordinate the actions of generator controllers to damp inter-area oscillations. Feliachi  
et al. (2006) use decentralised control agents to reroute power flows in a DC shipboard 
power system by adapting the max flow problem from graph theory to a decentralised 
formulation of the power flow problem. 

The method proposed in this paper differs from the above decentralised algorithms in 
several ways. Firstly, it can manage transmission-line overloads, which are particularly 
important for cascading failure propagation. Secondly, it does not require any real-time 
interaction with centrally located operators or blackboards. Thirdly, the method is 
sufficiently general that it could have application in other problem domains. 

1.2 A formulation for emergency control in power networks 

A good objective for power system operations is to maximise the difference between the 
benefit of service provided (electrical energy) and the cost of providing that service (fuel 
cost, maintenance costs, etc.). In the economics literature this is known as social welfare 
maximisation, a form of which is used in many Optimal Power Flow formulations 
(Weber and Overbye, 2002). When a power system is stressed, however, where a 
cascading failure is likely or is already in progress, fuel cost is of lesser importance 
relative to the losses associated with interrupted service and damaged equipment. Thus 
during stressed operations (‘Alert’ or ‘Emergency’ stages from Fink and Carlsen (1978)), 
a good operating policy is to simultaneously minimise the costs associated with 
mitigating control actions (wear and tear on the equipment and interrupted service) and 
the risk of interrupted service that could result from future dependant failures. Equations 
(1–3) provide a formal description of this problem, which is here referred to as the 
Emergency Control Problem (ECP). 

Given a discrete time horizon starting with the current time (t0) and ending at some 
point in the not too distant future (tK), a state matrix: X = [x0, .., xk, ...xK], a control 
variable set point matrix: U = [u0, ..., uk, ..., uK], and a state predictor function g(...), we 
can formulate the ECP as: 
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min ( , ) ( , )c r+
U

U X U X  (1) 

s.t. xk+1 = g(xk, uk, uk+1) (2) 

1( ) ( )k k k+≤ ≤u u u u u  (3) 

where c and r are estimates of the cost and risk associated with a trajectory of control and 
state variables. Assuming: 

• that the system is deterministic within the time horizon and accurately modelled by g  

• that r provides an accurate measure of the expected losses after tK (the end of the 
time horizon) 

• that the problem is convex 

• that the time steps are small enough to ensure that all of the useful information about 
the trajectory is represented by the discrete signals, an optimal control trajectory 
solution (U*) to ECP will be at least as good as a control signal produced by any 
other controller.  

When there is uncertainty (random variables) in a system, g will not provide perfect next 
state predictions. There are two approaches for dealing with this type of prediction 
uncertainty in an optimisation-based control problem. The first approach is to reformulate 
the problem using stochastic programming, explicitly modelling the random variables 
from estimated probability distributions. This approach can improve the quality of the 
output signal, particularly when the variables do not follow Gaussian distributions, but 
substantially increases computational complexity. Another approach is to use feedback 
and small time steps to compensate for modelling errors and uncertainty. While a 
combination of these two methods may be considered in future work, this paper takes the 
second approach (feedback) to uncertainty. The result is a MPC problem that can be used 
for centralised cascading failure mitigation given good real-time system observability and 
communications bandwidth at the operator’s facility. 

While it may be feasible to solve the ECP from a central location (Section 2 describes 
the centralised approach), a decentralised solution could have a number of advantages, 
particularly in terms of increased robustness and decreased communications bandwidth. 
With this in mind this paper (in Sections 3 and 4) describes a way to use reciprocally 
altruistic software agents to solve the ECP in real time. Section 5 describes experimental 
results that indicate the effectiveness of this decentralised approach to emergency control 
and Section 6 offers some concluding remarks. 

2 Centralised MPC for cascading failure mitigation 

This section describes how the general ECP formulation (Equations 1–3) can be used to 
select load-shedding and generator adjustments to quickly mitigate the effects of a 
cascading failure from a central location. The problem formulation includes the following 
control variables in its control vector, uk: generator power output set points (PG), 
generator voltage magnitude set points (|VG|), and load reduction. We assume that load 
can be reduced approximately continuously through carefully selected switching actions 
and that buses are defined such that generators and loads are at different buses. Demand 
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reduction is represented by a reduction factor λd ∈ [0, 1] for each load bus d ∈ D, such 

that the injection by loads at bus d is Pd + jQd = ( ).d d dP jQλ +  Here d dP jQ+  represents 

the demand at bus d before load shedding. 
With these definitions and using the ∆ operator to represent differences in discrete 

time (∆xk = xk+1 – xk) the cost function (c in Equation 1) represents the costs associated 
with changes to the control variables: 

, ,
1

( , ) ( ( ) ( ) ( ))

( )

K
k

k G k G k
k

T
k D k

c c c c

c

ρ λ

λ λ
=

= + +

∆ = ∆

∑X U P V

c

⏐ ⏐
 (4) 

, ,( ) T
G k G G kc ∆ = ∆P c P  (5) 

, ,( ) T
G k V G kc ∆∆ = ∆V c V⏐ ⏐ ⏐ ⏐ ⏐⏐.  (6) 

The three cost vectors (cD, cG, cV) represent demand reduction costs (cD), fast generator 
ramping costs (cG) and costs associated with rapid changes to voltage set points (cG). We 
assume that these costs can be determined and set off-line by human operators and/or 
regulators. By using a separate cost term for each control variable one can tune the 
system to give preference toward load shedding at less critical locations and thus reduce 
the probability of interrupting critical loads. The discount factor, ρk, places higher 
importance on actions in the near future, thus allowing the system to attempt low-cost 
actions before high-cost actions. Discount factors are useful in planning problems, such 
as an MPC formulation, because uncertainty increases with time. 

The risk term (r in Equation 1) estimates the impact of stress on the risk associated 
with foreseeable cascading failure. The risk function described below is simple, but has 
proved useful in practise. It assigns a cost to excessively high branch current magnitudes 
and low voltages over the time horizon. When all voltage and current magnitudes are 
within their limits over the time horizon, r evaluates to zero. When currents are high or 
voltages are low, r is proportional to the excess: 

1

( , ) ( )
K

k T T
I I V V

k

r ρ
=

= +∑X U c r c r  

,max( ( ) ,0),v V v v kr k V V vβ= ∀⏐ ⏐−⏐ ⏐  (7) 

,max( ( ) ,0),i i k I ir I k I iβ= − ∀⏐ ⏐ ⏐ ⏐  (8) 

where: 

Ic  and Vc  = cost vectors assigned to excess currents and low voltages 

iI⏐ ⏐  and vV⏐ ⏐  = lower voltage and upper current limits 

βI(k) > 1 and βV(k) < 1 = scalars that progressively move the effective current and  

  voltage stress thresholds ( ( )I kβ I⏐ ⏐  and ( ) )V kβ V⏐ ⏐  toward  

  the actual limits over the time horizon. 
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In the examples used in this paper β (k) are chosen to force the effective voltage and 
current limits toward the actual limits linearly with a fixed reduction rate. For example, if 
the current on branch i is |Ii| = 150A, the current limit is 100A,iI =⏐ ⏐  and the reduction 
rate is set at 10% (αI = 0.1), βi(k) will be the sequence: βi(k) ∈ {1.4,1.3,1.2,1.1,1.0}. 

The state-predictor function, g(…) provides a mapping between state and control 
variables and system state at next time step. For this application we use a linear state 
predictor function with the following form: 

1k k k k+ = + ∆Ax A x B u  (9) 

which becomes the direct function xk+1 = xk + A–1B∆uk. When A and B are built to form a 
linearised version of the AC power-flow constraints (P + jQ = V  (YV)*), Equation (9) 
is a fairly accurate predictor so long as the changes at each MPC time steps are small. 

Control variable limits (Equation 3) limit the control variable set points over the time 

horizon (0 ≤ λk ≤ 1, , ,G G k G≤ ≤P P P  and , )G G k G≤ ≤V V V⏐ ⏐ ⏐ ⏐ ⏐ ⏐  and changes to the set 

points, as shown in Equations (10–12): 

,0 ,G G k− ≤ ∆ ≤P P 0  (10) 

,G G k GV V−∆ ≤ ∆ ≤ ∆V⏐ ⏐ ⏐ ⏐ ⏐ ⏐  (11) 

.kλ− ≤ ∆ ≤1 0  (12) 

The voltage change limit GV∆⏐ ⏐  is chosen to force generators to change their set  
points incrementally. Table 1 shows typical values for the parameters used in the  
ECP formulation.  

Table 1 Typical parameters for the global emergency control problem formulation 

Parameter Typical range Value used for Figure 1 Units 

GV∆⏐ ⏐  [0, 0.01] 0.01 p.u. V 

ρ [0, 1] 0.09 – 

cI [106, 1010] 108 $/p.u. A 

cV [106, 1010] 108 $/p.u. V 

s
cθ  [1010, 1014] 1012 $/radian 

αI [0.05, 0.20] 0.10 Fraction of |I| limit 

αV [0.001, 0.02] 0.01 p.u. V 

cD [100, 10 000] Randomly assigned $/MW 

c∆V [0, 105] $10,000 $/p.u. V 

cG [0, 100] 30 $/MW 

2.1 Illustrative results for centralised mitigation 

To demonstrate that the global ECP can be used to reduce the size of cascading failures, 
we simulate a global ECP controller interacting with a power-flow model of the IEEE 
300 bus test case as available with MATPOWER (Zimmerman and Gan, 1997). Branch 
current limits were assigned randomly to the case using the procedure described by Hines 
(2007). To simulate cascading failures, random branch outages were injected into the 
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network to find contingencies that cause over-current conditions. After injecting a 
contingency (removing branches), the system is simulated in time by a sequence of AC 
power flow calculations. Details of the cascading failure simulator are available in Hines 
(2007). At each time step a set of emergency control actions (∆PG, ∆ |VG|, and ∆λ) are 
calculated from which loads and generators are adjusted. Figure 1 shows the ECP control 
actions, along with currents and voltages, for a seven branch contingency on the 300 bus 
network. If the overloads had been allowed to persist, the system would have cascaded to 
a near total blackout. By incrementally shedding 100 MW (0.43%) of demand the ECP 
controller averts a system-wide cascading failure. Because the algorithm chooses load 
shedding based on cost-priorities substantially less of the total demand value was lost 
(0.035% of the demand value in $ vs. 0.43% of the load in MW). Also, experimental 
results show that the inclusion of generator bus voltage settings in the control variable set 
can significantly reduce the cost of mitigating control actions. Without voltage control 
the amount of required load shedding increases from 100 MW to 164 MW. 

Figure 1 Time domain simulation results showing mitigating control actions after removing 
seven branches from the IEEE 300 bus system 

Note: Branch currents are shown after normalising such that / .figI I I=⏐ ⏐ ⏐ ⏐ ⏐ ⏐  

3 Problem decomposition, cooperation and reciprocally altruistic agents 

In resource-constrained systems there are many problems that are more effectively  
solved by groups of agents, rather than a single problem-solving agent. If a team of 
problem-solving agents is to arrive at a good solution, the problem must be decomposed 
into sub-problems, each of which is in some way more tractable than the global problem. 
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The process of dividing a large problem into sub-tasks is known as problem 
decomposition. The literature on problem decomposition is vast. Wooldridge (2002) and 
Wooldridge and Jennings (1995) provide a good overview of the subject in the context of 
solving computer problems using cooperative agents. Horling and Lesser (2004) discuss 
some more recent paradigms for multi-agent organisations. Durfee (1999) builds on game 
theory to describe the challenges associated with coordinating agents with different goals. 
A large literature exists on decomposing computer problems for parallel computation, 
within which the work by Bertsekas and Tsitsiklis (1997) is particularly notable.  

Clearly there are many ways to decompose a large problem into subtasks. With some 
problems, decomposition is a fairly straightforward process: find portions of the problem 
that are loosely connected to other portions of the problem, assign the sub-problems to 
agents, and assemble the sub-problem solutions after the agents complete their work. 
Take, for example, the solution of a large Monte-Carlo simulation problem. Once a 
mathematical system model is established each random perturbation of the problem can 
be solved in parallel without interaction among the solver-agents. The distribution of 
outcomes is relatively easy to compute after the agents complete their calculations. 
However, many problems have tightly interconnected components, in which vastly 
superior solutions can be found when problem-solving agents share information and 
coordinate their actions while they are still working on their solutions. One approach to 
coordinated work is to decompose the problem into tasks that can be completed 
sequentially. An assembly line is an example of sequential decomposition. The  
Gauss-Seidel power flow solution method (Meisel and Barnard, 1970) is another. Series 
work can provide good results in many, but not all, problems (see Camponogara, 2000) 
for a proof regarding the effectiveness of sequential work). When a problem has many 
sub-problems and tight time constraints, series work is not practical. For the case of large, 
time-critical network control problems such as the ECP in a power grid, series work is 
impractical with realistic communications constraints. Such problems require a problem 
decomposition that facilitates high-speed, highly-coordinated, real-time decision making. 

Because we are interested in problem decomposition methods that are practical for 
real-time problems (with time horizons in the seconds to minutes range), we will restrict 
our attention to problems that can be divided among n control agents that work in parallel 
and which are located at nodes in a network (Assumption 1). We assume (Assumption 2) 
that the agents are working on a generic problem that can be written in the form: 

min ( , )f
u

u x  

s.t. ( , ) .≤g u x 0  

We also assume (Assumption 3) that the feasible control space, u ∈ U, and state space,  

x ∈ X, can be divided disjointly among the agents such that each variable is assigned  

to exactly one agent. If , , , and 
a b a bN N N Nu u x x represent the control and state vectors  

for two arbitrarily chosen agents a and b, the subscript sets Na and Nb have the  
following properties: 

,
1

:
n

i N k k
i

N N
=

= =u u∪  

0, , {1, , }.a bN N a b n= ∀ ∈/ …∩  
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After disjointedly dividing the variables among agents and assuming that the objective 
function can be separated into a sum of sub-objectives, the global problem can be written 
as follows: 

1

min ( , ) ( , )
i i

n

i N N
i

f f
=

= ∑
u

u x u x  (13) 

( , , )
( , ) .

( , )
i i i i

i i i

M N N N

M N N

⎡ ⎤
⎢ ⎥= ≤
⎢ ⎥⎣ ⎦

g u x x
g u x 0

g u x
 (14) 

Here the constraints are divided such that the set Mi includes each of the constraints that 
includes one or more of agent i’s variables. The constraints that are not affected by  

agent i’s local variables are in the set .iM  If ,N Ni i
ag∇u x  represents the partial derivatives 

of constraint ga with respect to agent i’s variables, then Mi is: 

,{ : }.
N Ni i

i aM a g= ∀ ∇ ≠u x 0  

We further assume (Assumption 4) that the control and state variables can be defined 
such that interactions occur only through state variables (x). In this form it is possible  
to divide the objective and constraints among agents. Each agent i is responsible for a 
sub-objective fi and a set of constraints .

iMg  Note that the sets Mi may overlap. 

For most network problems there exists a fairly natural way to assign terms in a 
global objective function to locations (agents) in the network. In a power network, for 
example, we can assign the costs associated with loads and generators to agents located at 
substations from which these variables are controlled. With the global problem thus 
defined it is straight-forward to divide the problem into a set of agent sub-problems of  
the form: 

min ( , )
i i

Ni

i N Nf
u

u x  (15) 

s.t. ( , , ) .
i i i i

M N N N
≤g u x x 0  (16) 

3.1 Regarding the generality of the decomposition assumptions 

While the decomposition framework described above cannot be applied to all problems, 
it does work for most network problems where agents have known interactions with 
neighbours. From Assumption 1 we are considering only problems where agents are 
located in a network of some sort. If the agents are mobile in this network, this 
formulation would require some additional modification. Assumption 2 is not restrictive 
as almost any optimisation problem can be written in this form, and optimisation 
formulations can be used to represent almost any problem. Assuming that we can assign 
variables to agents (Assumption 3) is also not restrictive. It may not be natural to assign 
each variable to only one agent, but it is certainly feasible to do so for any problem with 
at least 1 agent. Assumption 4 is arguably the most restrictive assumption, in that it 
forbids interactions among agent-variables within the objective function. There are 
certainly cases where two agents’ utility contains common variables. For example two  
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agents’ utility functions may vary with the price of some good (oil for example). But, in 
most cases at least, it is possible to redefine the utility function as depending only on a 
local variable (personal wealth for example), and then add a constraint for each agent, 
which defines how that local variable varies with the common variable. In the oil 
example agent a and agent b would both have constraints that define their personal 
wealth as a function of the price of oil. So long as interactions can be moved from 
objectives to constraints, Assumption 4 is not restrictive. 

3.1.1 Independence decomposition 

One candidate decomposition of the problem in Equations (15) and (16) would be to 
allow each agent to solve its sub-problem independently, with some assumed value for 
the external state variables ( ),

iN
x  and implement their chosen control actions .

iNu  Under 

very strict conditions, an ‘independence decomposition’ of this sort will give optimal 
results. Specifically, if every agent’s decision at optimality will have no effect on  
other agents’ decision, the results of independent decision making will be optimal. 
Symbolically, if 

*( )
Ni

∇ x  
iM =g 0  for all i, the sub-problems are completely separable and 

the results of independent optimisation will be optimal. For example, in a perfect market, 
where prices are well-known and no agent has a significant affect on those prices, fully 
autonomous decision making leads to optimal outcomes. 

When the external variables ( )
iN

x  do appear in agent i’s constraints, some 

cooperation among the agents is needed to obtain good results. The following describes 
some common types of cooperation within this optimisation framework. 

3.1.2 Voting 

Agents that cooperate through a voting system must work within additional constraints 
(generally laws enforced by public officials) which are decided upon by the majority. We 
can represent a voting system in the context of optimising agents by adding additional 
constraints to the agent sub-problems: 

min ( , )
i i

Ni

i N Nf
u

u x  (17) 

s.t. ( , , )
i i i i

N N N N
≤g u x x 0  (18) 

( , , ) .
i i i

N N N
≤v u x x 0  (19) 

Equation (19) is a set of constraints that every agent must consider while making 
decisions. For example drivers agree to constrain their driving behaviour in a 
environment with voted-upon traffic laws. Constraints, such as a speed limit, could  
be represented by inserting the speed constraint into v. When selected constraints are 
well-chosen, agent behaviours are more nearly optimal, though voting systems certainly 
do not guarantee optimality Arrow (1950). 
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3.1.3 Iterative information exchange 

In the independence decomposition (Equations 15–16) agents will obtain good results if 
every agent can predict the external state variables ( )

iN
x  after the optimisation process 

has completed. One way for agents to estimate these variables is to iteratively exchange 
preliminary estimates of these variables with neighbours before making a final decision. 
This process was employed in Camponogara and Talukdar (2005) and shown to lead to 
optimal results under some conditions. The decentralised optimal power flow methods 
described in Kim and Baldick (2000) also fall into this category. Unfortunately the 
number of iterations required to converge to arrive at optimality can make this type of 
cooperation impractical for time-critical decision making. 

3.1.4 Perfect altruism 

One way to guarantee optimality would be for every agent to share all of its information 
with every other agent and have every agent solve the global problem, implementing only 
the local portion of the solution. Thus agent i’s problem becomes: 

min ( , ) ( , )
i j j

Ni

i N N j N N
j i

f f
≠

+ ∑
u

u x u x  (20) 

s.t. ( , , )
i i i i

M N N N
≤g u x x 0  (21) 

( , ) .
i i iM N N

≤g u x 0  (22) 

If every agent has perfect information about external variables ( , )
i iN N

u x  and constraints 

( ),
iM

g  this decomposition leads to globally optimal outcomes because Equations (20–22) 

is equivalent to the global problem. Unfortunately perfect altruism is impractical in all 
but the simplest problems for two reasons. For one it is impractical for every agent to 
exchange all information with every other agent. If there are n agents, the communication 
system will need to carry n(n – 1) messages to get every agent’s state to every other 
agent. Given finite communications bandwidth, this level of communication becomes 
increasingly impractical as the size of the problem grows. For biological agents, it is 
certainly infeasible for every individual of a given species to regularly exchange 
messages with every other agent. High-bandwidth communications systems certainly 
increase the limits on feasible message passing, but if n is large and message passing 
needs to occur with some frequency, n(n – 1) messages will quickly result in delays and 
dropped messages. Similarly, requiring that every agent solve the global problem means 
that the agents must have substantial computational abilities to quickly arrive at an 
answer, which would be cost-prohibitive for most decentralised systems. 

3.1.5 Reciprocal altruism 

Between perfect altruism and complete independence (Equations 15 and 16) is 
Reciprocal Altruism (RA). According to Trivers (1971) altruism is, “behaviour that 
benefits another organism, not closely related, while being apparently detrimental to the 
organism performing the behaviour”. In other words an agent acts altruistically when it 
considers the goals of other agents when making local decisions, even if doing so could 
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be detrimental to its local goals. RA occurs when agents choose to consider the goals of 
other agents (though not necessarily all other agents), while assuming that the other 
agents will act reciprocally. Trivers found, using simple theoretical models, that there are 
conditions under which natural selection will select for altruism. In his models genetic 
alleles for altruism and non-altruism determined altruistic behaviour. To illustrate one of 
these models, let agent a be an altruist and agent b a non-altruist. When agent b fails to 
act altruistically toward agent a, agent a reacts by refraining from altruistic acts that 
benefit agent b. In this model there is a small net benefit over a lifetime of actions to the 
altruist, thus biasing natural selection toward the altruistic allele, which will therefore 
eventually dominate.  

With RA thus defined we can write the goals (objectives and constraints) of 
reciprocally altruistic agent a as follows: 

[ ]
min ( , ) ( , )

a a b b
N ai

a

a N N b N Ni a R
b R

f f
∀ ∈

∈

+ ∑
u

u x u x
∪

 

. . ( , , ) , [ ].
i i i i

N N N N
s t i a R≤ ∀ ∈g u x x 0 ∪  

For RA to be effective, each agent must choose a set of agents (Ra) whose goals it will 
consider while making local decisions. There are many ways that agents can choose 
neighbours for goal-sharing. Wilkinson (1984), for example, found that vampire bats 
choose to regurgitate food to other bats based on relational proximity (kinship) and the 
potential for reciprocation. In a community of agents that can be represented as a graph, 
one way to illustrate the choice of reciprocal sets based on relational proximity is to have 
each Ra be the set of agents that can be reached by travelling over no more than r links 
(see Figure 2). While there are other ways to measure proximity, this method has proved 
useful for our application. 

Figure 2 Agents a and b with their reciprocal sets (Ra, Rb) chosen based on a graph distance  
of r = 2 (see online version for colours) 
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4 Decentralised MPC for cascading failure mitigation 

With a few additional details, it is possible to assign the ECP from Section 2 to 
reciprocally altruistic agents, and obtain nearly optimal solutions to the problem. For the 
power systems case, we place one agent at each substation (node) in a power network. 
The decision and state variables (load, generator set points, voltages and currents) and 
their associated costs (c and r in 1) and box constraints (3) are assigned to agents based 
on proximity. Agent a at bus a will be responsible for the generator or loads connected at 
bus a and the voltage and current constraints at this bus. 

Each agent forms a linear state prediction function (Equation 2) for each of its local 
state variables using the power-flow Jacobian. In order to form the power-flow Jacobian 
for a given system an agent needs four types of data:  

1 the structure of the power network (branch locations and impedances) 

2 the status (open or closed) of circuit breakers in the system 

3 bus voltage magnitudes  

4 the phase-angle shift across transmission lines.  

The initial structure of the network (1) can be provided to each agent off-line by the 
system operator. When an agent does not have recent measurements for (2–4), it assumes 
that (2) circuit breakers are closed, (3) bus voltages are at 1.0 p.u. and (4) phase-angle 
difference are zero. The resulting prediction matrix thus comes from the AC power flow 
equations for known locations and the DC power flow simplifications for unknown 
locations. Each agent maintains a model of the entire network, but uses default data to 
make up for data that it cannot collect from its neighbours. 

Once agent a assembles an initial network model, it chooses its reciprocal set (Ra), 
which includes two sets of agents: a set of local neighbours (La) and a set of extended 
neighbours (Ea). La is defined as the set of agents that can be reached by travelling no 
more than rl branches and Ea the agents that are not in La and can be reached by travelling 
over no more than re branches. Ra is thus the union of agent a’s local and extended 
neighbours: Ra = La ∪ Ea. Agent a exchanges information (state and control variables) 
with agents in La frequently (at least once per second) and with agents in Ea occasionally 
(once per day to once per week). When an agent does not have good data for a given 
variable it uses the default values for voltages, phase-angles and circuit breakers and 
assumes that no significant changes will occur at remote generators or loads and that all 
remote currents are well below their limits. Thus the control agent at bus a uses the 
following formulation to make decisions: 

0

min ( ( ) ( ))
W

K
k

Wk Wk
k

c rρ
=

∆ +∑
u

u x  (23) 

, 1s.t. W k Wk Wk+ = + ∆x x B u  (24) 

, 1( ) ( )Wk W k Wk+≤ ≤u u u u u  (25) 
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where B is a matrix that comes from the linearised AC power flow equations and  

[ ]
.

a
ii R a

W N
∈

=∪ ∪
 All of the remaining variables and constraints are the same as 

described in Section 2. In addition to cooperating by sharing goals and information with 
its neighbours, each agent uses a simple negotiation protocol to improve on its decision 
before taking, thus combining RA and iterative information exchange. The following 
describes the resulting decision process for agent a: 

Step 1 Set t0 = t0 + ∆t. 

Step 2 Gather measurements from local sensors. 

Step 3 Share local measurements with local neighbours (La). 

Step 4 Share measurements that are outside of limits with extended neighbours (Ea). 

Step 5 Calculate a set of control actions (∆u[a]) by optimising Equations (23–25). When 
r(xW) = 0 the optimal action is ∆uk = 0, thus skip 5–8. 

Step 6 Choose a set of agents (P) with whom to negotiate. P is chosen such that  
[ ]{ : }.aP i ε= ∀ ∆ <u⏐⏐ ⏐⏐  ε is chosen to ensure that agents only negotiate with  

agents who appear to need to take significant action. 

Step 7 For each agent b ∈ P send a set of measurements that are current in a’s model,  
but are not likely to be current in b’s model, given the locations of a and b. If  
this is the first round of negotiation this set of measurements (xQ and uQ) will be:  

.
a b

ii L L
Q N

∈
=∪ ∩

 Each agent b incorporates this new information into its model, 

which can expand W. 

Step 8 Repeat from 5 until a predefined control deadline (tc = t0 + 0.8∆t) is reached. 

Step 9 At time tc implement the locally calculated control actions: [ ] .
a

a
N∆u  

Step 10 When the current time reaches t0 + ∆t repeat from 1. 

5 Simulation model and results 

We test the decentralised control system described in Section 4 by applying it to an AC 
power-flow model of the IEEE 300 bus power network (see Hines, 2007) for detailed 
model data). Ten heavily loaded permutations of this case were generated by randomly 
adjusting the generator outputs and loads and setting the branch current and bus voltage 
limits such that no single branch outage results in a current or voltage violations. Parallel 
lines were added in locations where a single branch outage would have separated the  
grid into separate islands. Each load is assigned a random demand-reduction cost in the 
range of $100–$10,000/MW. For each of the ten cases, ten sets of branch outages were 
randomly selected by random draws from a Bernoulli distribution, selecting those cases 
that caused at least one current or voltage violation. Each resulting disturbance consists of 
between 4 and 15 branch outages. 
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We estimate the impact of the cascading failures, with and without mitigating control 
actions, using a pseudo-dynamic power flow model. The model includes simulated time 
over-current relays that remove branches when the integral of the excess current exceeds 
a threshold. At each time step (which is assumed to represent one second in the model) 
the model uses a Newton-Raphson AC power flow to find the result of switching and 
control actions in the previous time step. The model roughly simulates under-frequency 
load shedding by reducing load and generation in 25% chunks if the power-flow 
calculation does not converge. Using this simulation model the mean demand loss over 
the 100 test cases is 7593 MW, or 32.6% of the initial demand. The simulated cascading 
failure costs range from $39 to $147,000,000, with a mean of $5,600,000. 

Figure 3 Cascading failure size distributions, and communications requirements, for different 
control scenarios applied to 100 test cases  

Notes: As the size of the local neighbourhood (rl) increases, the control quality 
approaches the results obtained from a single global, omniscient MPC agent 
(right), though with increasing communication bandwidth requirements. The 
negotiation protocol produces results that are nearly as good as the omniscient 
controller, but further increases the bandwidth requirements. 

This same cascading failure model was used to estimate the effectiveness of the 
centralised and decentralised control schemes described in Sections 2 and 4. As described 
in Section 3, the selection of neighbours, or reciprocal sets (Ra), is essential to the 
effectiveness of a community of RA agents. If the reciprocal sets are too large,  
message-passing can overwhelm the communication channels and the agents’ decision 
processes becomes overly complicated. If the sets are too small, agents will not make 
good decisions with respect to the global problem. To determine an appropriate size for 
Ra, we simulate the agent-based control algorithm for different rl, measuring both the 
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distribution of blackout costs and the amount of data exchanged by the agents. The radius 
of the extended neighbourhood is fixed at re = 10 for these simulations. All other 
parameters are as described in Table 1. Data exchange, or bandwidth, is measured by 
logging the size (in kilobytes) of each message that comes in to or goes out from each 
agent. Figure 3 shows that as rl increases the average blackout size decreases and the 
amount of data exchanged increases. As the agents increase the extent to which they 
exchange information and share goals (their altruism) the system approaches global 
optimality, though with increasing bandwidth requirements. Simulations also indicate 
that the negotiation protocol (steps 6 and 7 in Section 4) can reduce the impact of the 
cascading failure, but substantially increase the communications burden. 

6 Conclusions 

This paper describes a new approach to decentralised control that uses reciprocally 
altruistic control agents and model predictive control. The agents make local decisions 
based on locally maintained models of the system to be controlled and goals that are 
shared with neighbouring agents. We show that as agents share more of their goals, 
effectively increasing their altruism, their decision-making ability increases but with the 
side effect of substantial increases in message passing. For the power network test cases 
used, we find that nearly globally optimal results obtain from the proposed approach, 
with reasonable bandwidth requirements. 

While this paper focuses on the mitigation of cascading failures in electricity 
networks, the method described here should be useful for a variety of network control 
problems, as would be found in many infrastructure systems. Future research will focus 
on the application of this approach to other infrastructure control problems to determine 
if indeed reciprocally altruistic control agents can be used within other problem domains. 
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