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Abstract
Numerous recent papers have found important relation-

ships between network structure and risks within networks.
These results indicate that network structure can dramat-
ically affect the relative effectiveness of risk identification
and mitigation methods. With this in mind this paper pro-
vides a comparative analysis of the topological and electri-
cal structure of the IEEE 300 bus and the Eastern United
States power grids. Specifically we compare the topology of
these grids with that of random [1], preferential-attachment
[2] and small-world [3] networks of equivalent sizes and
find that power grids differ substantially from these abstract
models in degree distribution, clustering, diameter and as-
sortativity, and thus conclude that these abstract models do
not provide substantial utility for modeling power grids. To
better represent the topological properties of power grids
we introduce a new graph generating algorithm, the mini-
mum distance graph, that produces networks with proper-
ties that more nearly match those of known power grids.
While these topological comparisons are useful, they do not
account for the physical laws that govern flows in electric-
ity networks. To elucidate the electrical structure of power
grids, we propose a new method for representing electrical
structure as a weighted graph. This analogous representa-
tion is based on electrical distance rather than topological
connections. A comparison of these two representations of
the test power grids reveals dramatic differences between
the electrical and topological structure of electrical power
systems.

1. Introduction

Recent research in complex networks has elucidated
strong links between the structure of a network and risks
within that network. Albert et al. [4] found that scale-free
networks [2], which are characterized by strongly heteroge-
neous (power-law) node connectivity (degree), are uniquely
robust to random failures but vulnerable to directed attacks.
However graphs with exponential degree distributions, such

as the random graph [1], were found to be equally vulnera-
ble to random failures and directed attacks. Extending these
results, Holme and Kim [5] found that optimal attack strate-
gies change as a network degrades. Studies of failures in the
Internet [6] and commercial air traffic networks [7], provide
empirical evidence for these theoretical findings. Nearly
comprehensive reviews of the complex networks literature
are available in [8, 9].

The relationship between structure and performance in
networks has implications for managing and mitigating
risks related to network attacks or failures. Garber [6]
describes strategies for reducing risks associated with the
scale-free structure of the Internet based on increasing re-
dundancy at the network hubs. Carley et al. [10, 11] re-
late organizational structure to effectiveness in covert intel-
ligence networks. Dodds and Watts [12] model formal and
informal organizational network ties finding that efficiency
trades off against system resilience best for multi-scale, hi-
erarchical structures. Eubank et al. [13] find evidence that
the graph of locations in urban social networks is scale-free
and shows that small-pox risk can be effectively mitigated
by placing sensors at the hub locations. Watts et al. [14]
show that broad distributions of disease outbreaks arise in
a simple hierarchical meta-population model, and that lim-
iting travel distance before frequency may control spread-
ing. Miller and Hyman [15] find that a disease vaccination
strategy based on connectivity, particularly the number of
locations or persons that an agent regularly visits, can be
significantly more effective than random vaccination.

Given their size, complexity and importance to modern
economies, it is not surprising that power grids have re-
ceived a fair amount of attention in the literature on net-
work science and complex systems. Watts and Strogatz
[3] measure the characteristic path length and clustering in
power grids, and find similarities to “Small-World” network
models. A number of studies measure the degree distribu-
tion of various power grids with some reporting exponen-
tial [16, 17] and others reporting power-law/scale-free de-
gree distributions [18, 19]. That studies of different power
grids in different countries or regions yield different topo-
logical structures is not necessarily surprising. Much more



surprising is that different analyses of identical grids (the
transmission system in the Western U.S.) have yielded dif-
ferent structural results [18, 17]. This paper clarifies this
uncertainty by showing that, at least for the IEEE 300 bus
network and the US Eastern Interconnect, an exponential
degree distribution is a better fit to the data than a power-law
distribution. In addition to reporting an exponential degree
distribution [17] also report a power-law in the topological
betweenness of nodes in power grids, which is proposed as
a potential explanation for the power-law that is observed in
the frequency of blackouts in the US [20] and Sweden [21].
Holmgren [22] compares the Western US power grid and
the Nordic grid using the topological attack/failure model
in [4], and finds that the Nordic grid has more of a fat-tailed
degree distribution structure. He finds that the Nordic grid
has a more fat-tailed degree distribution than the Western
US and provides some recommendations for increasing the
robustness of power grids.

While they do provide insight into network structure,
these initial studies focus on physical topology and largely
neglect the equations that govern flows in power networks,
namely Ohm’s and Kirchhoff’s laws. To address this
deficiency, Hines and Blumsack [23] describe a measure
of Electrical Centrality for power grids. Bompard et al.
[24, 25] combine topological models with DC load flow
models and propose new measures that can be useful in
identifying critical components. Blumsack et al. [26] notes
relationships between Wheatstone structures within power
grids, reliability and efficiency. Relatedly, Wang et al. [27]
present a method for generating synthetic power grids.

The field of power systems has a long history of vulner-
ability assessment. Automatic contingency selection and
ranking methods based on sensitivities (linear or nonlin-
ear) [28, 29] have been industry standard procedure for
quickly identifying vulnerabilities. Other approaches have
been to simulate specific events on the transmission to de-
tect vulnerabilities (a summary of these approaches can be
found in [30]), as well as applying traditional techniques of
probabilistic risk assessment [31, 32]. The challenge with
methods requiring system simulations is overcoming high
dimensionality; in a large system, there are an enormous
number of different combinations of events that could rep-
resent a system vulnerability [33]. Only recently have re-
searchers in the power systems field begun to take complex-
systems approaches to understand the nature of vulnera-
bility [20, 34], and to incorporate structural information
from the network in the detection and mitigation of failures
[35, 36, 37].

1.1. Goals and outline of this paper

This paper aims to fill a number of gaps in this existing
research on the structure of power grids, and to provide a

foundation for new tools for vulnerability assessment. The
data used in this study include a standard test case, the IEEE
300 bus network, and a 49,907 bus model of the US Eastern
Interconnect (EI). The EI model is substantially more de-
tailed and accurate than models that have been used in past
structural studies of the North American grid.

Section 2 provides a topological analysis of the two net-
works, showing how power grids are topologically similar
to and different from random [1], small-world [3], and pref-
erential attachment [2] graphs. In Section 3 we propose a
new algorithm for creating synthetic networks with proper-
ties that are similar to power grids, relative to these exist-
ing models. Section 4 proposes a new method for studying
power grids as complex networks, based primarily on elec-
trical, rather than physical, structure. Section 5 discusses
some implications of these results for identifying vulnera-
bilities.

2. The topology of power grids

As previously noted, the existing literature shows some
disagreement over the topological structure of power net-
works. Some report a power-law degree distribution
whereas others argue that an exponential fit is superior. This
section aims to clarify this and other uncertainties regarding
the structure of power grids using a larger, more accurate
model of the Eastern US system than has been used in past
studies. To further show how power grids are similar to and
different from common abstract network models, we com-
pare the topology of the US Eastern Interconnect (EI) to
similarly sized synthetic graphs. A similar, but less com-
plete, comparison is available in [27].

In this section we represent each test network as an
undirected, unweighted graph with n vertices/nodes and m
links/edges. For the power grid models all buses, whether
generator, load, or pass-through, are treated equally. For the
power grids, n is the number of buses and m is the number
of connected bus pairs. Note that the links can represent
a set of parallel transformers or transmission lines, which
means that m may be slightly smaller than the number of
branches in the power system model. The set of all vertices
and edges in each graph, G, is {N, M}. The adjacency ma-
trix for graph GX is AX , with elements aij .

The following sub-sections describe the power grid data,
the synthetic network models and the metrics that are used
for comparison purposes.

2.1. Power grid data

In this paper we look at two power grid data sets: a stan-
dard test system (the IEEE 300 bus system) and a large
model of US Eastern Interconnect. The IEEE 300 bus
system (see Fig. 1) is available from [38]. The system



IEEE 300 bus network. 300 nodes, 411 edges.

Figure 1. Topology of the IEEE 300 node system

has 411 branches, and average degree (< k >) of 2.74.
Two of the branches are parallel lines, so the graph size
is: |G300| = {300, 409}. The Eastern Interconnect (EI)
data come from a NERC planning model for 2012. The
NERC EI planning models are known as MMWG (Multire-
gional Modeling Working Group) cases, and are classified
as “Critical Energy Infrastructure Information” by the US
Department of Energy. The authors have obtained permis-
sion to use these data for research purposes. The EI model
has 49,907 buses, though in our model 310 of these are
isolated from the larger sub-components. After removing
the isolates and parallel branches, we obtain a graph (GEI )
with 49,597 vertices, 62,985 links and an average degree
< k >= 2.54.

2.2. Synthetic networks

To show how power grids differ from other network
structures we generate three graphs with similar sizes to the
IEEE 300 and EI graphs: A small-world [3], preferential at-
tachment (PA) [2], and a random graph [1]. Each graph is
generated to have the same number of nodes and nearly the
same number of branches as the power grid.

The random graph is generated using the standard algo-
rithm [1, 4] with a fixed number of nodes and links.

To generate a preferential attachment/scale-free (PA)
graph with roughly n nodes and m links we modify the al-
gorithm described in [2] somewhat. For each new node a
we initially add one link between a and an existing node b
using the standard roulette wheel method. Specifically node
b is selected randomly from the probability distribution
Pa→b = kb/

∑
c kc. After adding this initial link a second is

added with probability m/n− 1. Thus the addition of each
new node results in an average of 1 + (m/n − 1) = m/n
new links, producing a preferential attachment graph with

n nodes and roughly m links.
The small-world model is argued in [3] to bear some re-

semblance to power grids. To test this we generate a regular
lattice with n nodes and approximately m links. The initial
links in the regular lattice are created in roughly the same
way as the modified PA graph above. With each new node,
a link is created to a neighboring node (for node a, the first
link is to a − 1). A second link is then created to node
a− 2 with probability m/n− 1, thus giving approximately
m links in total. Note that a − 1 and a − 2 need to be ad-
justed for the first two nodes in the graph. After generating
the regular lattice in this manner random re-wiring proceeds
according to the method described in [3] until the diameter
is approximately the same as the corresponding power grid.

2.3. Measures of graph structure

There are many useful statistical measures for graphs.
Among the most useful are degree distribution [2], charac-
teristic path length [3], graph diameter [8], clustering co-
efficient [8], and degree assortativity [2]. These measures
provide a useful set of statistics for comparing power grids
with other graph structures.

The probability mass function (pmf) for node connectiv-
ity, or degree distribution, describes the diversity of connec-
tivity in a graph. While the measure has a long history, re-
cent results showing that many real networks have a power-
law degree distribution (so-called scale-free networks [2])
has emphasized the value of the measure. The extent to
which the degree distribution is fat-tailed indicates the num-
ber of hubs within the network. The degree of node i in a
graph with adjacency matrix A is:

ki =
n∑

j=1

aij (1)

and the degree distribution is Pr(k = x) = nk/n, where nk

is the number of nodes of degree k. Often it is more con-
venient to work with the complementary cumulative distri-
bution function (ccdf). For scale free networks, where the
power-law tail starts at xmin, the ccdf is:

Pr(k ≥ x) =
xα

min

xα+1

If the degree distribution is exponential, as found in random
graphs, a minimum value Weibull distribution provides a
better fit to the data:

Pr(k ≥ x) = e−( x−xmin
λ )β

Many real networks show substantial clustering among
nodes. Watts and Strogatz [3] report that the network of
collaborations among film actors and the neural structure of



the C. elegant worm show substantial clustering, whereas
clustering in the Western US power grid is smaller. In this
paper we use the clustering coefficient described in [3]:

C =
1
n

n∑

i=1

ci (2)

where the clustering of node i (ci) is

ci =
ei

(ki(ki − 1))/2
(3)

and ei is the number of edges within the cluster of nodes
including node i and its immediate neighbors Ni:

ei =
∑

∀j,k∈{Ni∪i}

ajk/2

While the size of a network can be measured by the num-
ber of nodes, n does not give much information about dis-
tances within the network. Two measures of network dis-
tance are commonly employed: diameter (dmax) and char-
acteristic path length (L). If D is a matrix in which the off-
diagonal elements dij give the minimum number of links
that one would need to traverse to get from node i to node
j, then the diameter of the network is:

dmax = max
ij

dij (4)

The characteristic path length is the average of all dij :

L =
1

n(n− 1)

∑

∀i,j
i &=j

dij (5)

One of the important contributions of [3] was to describe a
model that shows the “small-world phenomena” described
by Travers and Milgram [39]. In small-world networks
L increases roughly with log n, whereas in regular lattice
structures L increases linearly with n.

Finally we compare the degree assortativity in the test
networks. Degree assortativity (r) in a network is defined
in [40] as the extent to which nodes connect to nodes with
similar degree. Formally assortativity is the correlation in
degree for the nodes on opposite ends of each link [41]:

r =
m−1

∑m
i=1 jiki −

[
m−1

∑m
i=1

1
2 (ji + ki)

]2

m−1
∑m

i=1
1
2 (j2

i + k2
i )−

[
m−1

∑m
i=1

1
2 (ji + ki)

]2

(6)
where m is the number of links in the network and ji/ki are
the degrees of the endpoints of link i.

2.4. Results

Analysis of the IEEE 300 bus and EI network models
clearly indicates that power grids have exponential degree
distributions, as found in random graphs. We perform two
statistical hypothesis tests to verify this relationship. Hy-
pothesis 1 is that the synthetic networks have the same de-
gree distribution as the empirical degree distribution in the
Eastern Interconnect (Pr(k) ∼ Pr(k : EI)). Hypothesis
2 is that the synthetic graphs have a power-law degree dis-
tribution (Pr(k) ∼ k−α). We use a Kolmogorov-Smirnov
t-test to evaluate these hypotheses. To find the power-law
distribution fit parameters (α and xmax) we use the method
described in [42]. Table 2 shows results from these tests, as
well as other measures of network structure. Figure 2 shows
the degree distributions for the large graphs.

To summarize we find that the random graph nearly
matches the degree distribution of the Eastern Interconnect,
but the other synthetic networks do not. Similarly we find
that the degree distribution of the Eastern Interconnect does
not follow a power-law (PKS < 0.001), whereas our PA
graph aligns well with a power-law degree distribution. Fig-
ure 2 shows the degree distributions for the 49,597 node
graphs. Because the degree distribution has a moderately
fat tail there is a significant difference between the random
graph and the larger power grid. A significant difference be-
tween the 300 node power grid and random graph was not
observed.

A number of other results in Tables 1 and 2 are notable.
The power grid graphs show a high degree of clustering, but
not as high as the small-world graph. Given the differences
in clustering and degree-distribution, it seems unreasonable
to argue that the small-world model provides a good repre-
sentation of power grids. Also the assortativity in the power
grids is negative, whereas the small-world model shows a
positive correlation. As expected, the larger preferential-
attachment and random graph models show nearly zero as-
sortativity.

3. The minimum-distance graph

The preferential attachment, small world, and random
graph models have proven to be useful in representing a
number of systems in which distance and cost are not par-
ticularly important. In the world-wide web for example,
the cost of link-creation is independent of physical distance.
In infrastructure systems, the physical cost of creating new
links has an enormous influence on network structure. In
power grids, gas pipelines, and water distribution systems
(among others) link costs scale roughly linearly with geo-
graphic distance and hubs are infrequent. The minimum-
distance graph described below represents these evolution-
ary dynamics in a fairly simple way and generates topolo-



Table 1. Statistical properties of 300 and 49,597 node graphs

Network IEEE-300
Eastern

Intercon-
nection

Random Random
Small
world

p = 0.08

Small
world
p =

0.0882

Preferential
attachment

Preferential
attachment

Nodes 300 49597 300 49597 300 49597 300 49597
Links 409 62985 409 62985 402 62906 409 62966
< k > 2.73 2.54 2.73 2.54 2.68 2.54 2.73 2.54
max(k) 11 27 7 13 6 6 32 391

C 0.11 0.071 0.008 0.00004 0.26 0.27 0.008 0.0006
L 9.9 35.8 5.7 11.3 9.6 36.6 4.4 7.2

dmax 24 96 12 26 24 96 9 18
r -0.22 -0.11 0.044 -0.0012 0.034 0.12 -0.19 -0.024

Hyp. 1 - -
do not
reject

reject** reject** reject** reject** reject**

Hyp. 2 marginal reject** reject* reject** reject** reject**
do not
reject

do not
reject

est. of α 3.5 3.5 3.5 3.5 3.5 3.3 2.49 2.88
* Significant at the 0.01 confidence level.

** Significant at the 0.001 confidence level.

Figure 2. Degree distributions for 49,597 node graphs

gies with properties that are similar to those observed in
power grids.

3.1. Simple minimum-distance graph

The following algorithm can be used to generate min-
imum distance graphs. Let Ma be the set of neighboring
nodes for node a.

• For a = 1 : n

1. Randomly generate planar coordinates for a (xa,
ya) from a uniform distribution

2. Generate approximately floor(m/n) links (a →

b) by iteratively selecting b to minimize the Eu-
clidean distance between a and b.

min
b

(xa − xb)2 + (ya − yb)2 (7)

s.t. b /∈ Ma

3. Generate one additional link from Eq. 7 with
probability P = m/n− floor(m/n).

3.2. The minimum distance graph with bisection

To improve the fit slightly we propose a one-parameter
version of the simple attachment kernel above. In many in-
frastructure systems, when a new node is created, the node
can either be connected to an existing node through a new
link, or it can be placed near and existing link, and become a
bisecting node for that link. Consider for example the con-
struction of a new town that needs to connect to the power
grid. The town can either be connected via a transmission
line or feeder to an existing substation, or a new substation
could be build, which would bisect an existing transmission
line. To modify the algorithm we introduce one parameter,
the bisection cost: cb. With this modification, the min-dist
selection criteria (Eq. 7) is modified slightly as follows:

min (C1, C2)
s.t. C1 = min

b/∈Ma

(xa − xb)2 + (ya − yb)2

C2 = min
i∈{1...m}

d(a → ei) + cb

where d(a → ei) is the distance between point a and the
nearest point along line segment ei, and cb is an exoge-



Table 2. Statistical comparison of minimum distance
graphs and power grid topologies - 49597 node graphs

Network East. Int. Min-dist Min-dist-2
cb =

0.008

Nodes 49597 49597 49597
Links 62985 62985 62963
< k > 2.54 2.54 2.54
max(k) 27 19 14

C 0.071 0.23 0.23
L 35.8 15.8 34.4

dmax 96 38 83
r -0.11 0.16 0.12

nously selected bisection cost. If C1 is lesser, then the algo-
rithm creates a new link a → b. If C2 is lesser then the new
node bisects the existing link ei.

3.3. Properties of minimum-distance graphs

Minimum distance graphs exhibit properties that are
similar to those that we find in power grids. As found in the
small world and power grid topologies the clustering coef-
ficients are fairly high. As found in the random graph and
the power grid, the degree distributions are exponential. As
we find in power grids and regular lattices, the characteristic
path lengths appear to scale linearly with n, rather than log-
arithmically. We continue to see positive, rather than nega-
tive, assortativity in the mid-dist graphs. In future work we
will look for ways to produce graphs with anti-correlated
node connectivity.

4. The electrical structure of power grids

In order to fully understand the structure of a power
grid, one needs to know not only its topology, but also the
structure that results from the physical properties that gov-
ern flow. To understand the electrical structure of a given
power grid we need a measure of electrical connectedness,
or conversely distance. Electrical distance has been used
in a number of power systems problems [43, 44, 45, 46],
although, aside from [43], electrical distance has not been
used extensively in the context of structural network anal-
ysis. While electrical distance does not perfectly represent
all of the ways in which components in a grid connect, it
is a useful starting point for structural analysis. There are
numerous variant measures of electrical distance, but one
of the simplest is the absolute value of the inverse of the
system admittance matrix (see. Eq. 8).

E = |Y−1| (8)

This electrical distance matrix, E with elements eab, gives
the sensitivity between voltage and current changes for ev-
ery node pair. Using this measure we can define a measure
that is roughly analogous to node degree, but for a fully con-
nected network with continuous weights for each node pair.
To do so we define a measure of connectivity distance for
each node a:

ea =
n∑

b=1
b &=a

eab

n− 1
(9)

This measure can be translated into a measure of electrical
centrality by inverting the distance measure:

ca =
1
ea

(10)

A similar measure was first proposed in [23], though in a
slightly different form. Figure 4 illustrates the electrical
centrality of the IEEE 300 bus system.

It is possible to produce a graph representation of the
electrical structure of the system from the electrical distance
matrix. We keep the original n nodes, but replace the m
links with the m smallest entries in the upper (or lower)
triangle of E. Thus we create a graph with size {n, m} with
links representing strong electrical connections rather than
direct physical connections. The adjacency matrix of this
new graph (R) is defined as follows:

R :

{
rab = 1 ∀eab < t

rab = 0 ∀eab ! t

where t is a given electrical distance threshold, which we
adjust to give 411 links. Figure 3 shows the electrical struc-
ture (R) for the IEEE 300 bus test case (also first presented
in [47]). Comparing the topology (A, Figure 3) to the elec-
trical structure (R, Figure 3) shows a stark contrast between
the electrical and topological structure of the test system.
A similar structural difference is found by comparing the
topology and electrical structure of the EI model. Table 3
summarizes the calculated metrics for the Eastern Intercon-
nection R matrix. One can see that there are nodes with
a very high degree. Clustering coefficient is also relatively
high respect to the value obtained from the equivalent topo-
logical network. Both average shortest path (L) and diam-
eter (dmax) hold low values indicating a strong electrical
connectedness. Figure 5 shows the distribution of normal-
ized distances (ccdf) obtained from the EI model. The topo-
logical distance distribution obtained from the D matrix is
smooth and it has an exponential tail, whereas the electrical
distance distribution (E matrix) has a different decay shape.

4.1. Electrical distances to load

Given the electrical distance matrix E, it is possible to
rank nodes by the amount of load/demand that is within a
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Figure 3. A graphical representation of the electrical
topology of the IEEE 300 bus system, formed by replac-
ing the 411 transmission branches with 411 shortest dis-
tance electrical links (the 411 smallest dij such that i >
j).

Figure 4. The IEEE 300 bus network with nodes/buses
drawn with sizes proportional to their "electrical central-
ity" (Eq. 10).

Table 3. Topologically equivalent metrics for the EI re-
duced electrical distance matrix (R).

Network EI reduced
electrical distance

matrix*

EI topology (A
matrix)

Nodes 1558 (48039
isolates)

49597

Edges 62984 62985
< k > 2.54 2.54
max(k) 1473 27

C 0.65 0.071
L 1.97 35.8

dmax 3 96
r -0.51 -0.11

(*) Metrics are calculated for the giant component.

Figure 5. Cumulative probability distributions for electri-
cal and topological distances (dab and eab) for the US
Eastern Interconnect.



given electrical distance threshold. Such a measure of elec-
trical distance to load enables additional insight to the elec-
trical structure of power grids. In this section we determine
the electrical distance to load in the approximately 4500
buses within the PJM controlled portion of the EI. From
the electrical distance matrix, E, we plot the percentage of
the total system load that is reached as electrical distance
increases from each bus. The resulting figures (6 and 7)
enables the visualization of the electrical proximity to load.

It is clear that the network has several groups of nodes
that are similarly distant from system load. By understand-
ing the physical topology of the network we observe that
nodes that are similarly distant from load are typically lo-
cated close to one another. However, nodes that are electri-
cally closest to load are not necessarily close, electrically or
physically, to each other. This suggests that there are sev-
eral hubs with a high electric centrality each serving differ-
ent loads. The shoulder that occurs at roughly 70% of load
is likely results from the fact that roughly 25% of the buses
are separated from the rest of the system by a small group
of transmission lines. Since a reasonably large fraction of
the total system load is located in this remote portion of the
network, this 25% of load shows up as a shelf in Figures
6 and 7. Typically, we are more concerned with the load
reached at very short distances from each node rather than
the distance at which most of load is reached.

The surface in Figure 7 shows that when nodes are sorted
by the distance at which most of the load is reached, the
distribution is relatively uniform. However, the variability
of slopes on the bottom 60% of the figure suggest that there
are several nodes that reach about 50% of load at a short
distance while maintaining a large maximum distance.

Using these techniques, several analyses can be per-
formed in future work. It would be useful to determine
the exact load served by a particular generator, or rather
the generation sources for a particular load in order to de-
termine the environmental effects of consuming electric-
ity. The relevant market for electricity consumption could
also be determined. The location dependent market price
of electricity is determined by the result of an optimization
problem and it is difficult to determine price sensitivities
to changes in load or generation levels. The electrical dis-
tance to load enables the simplification of the problem by
reducing the relevant market for electricity consumption to
a much smaller number of nodes. These carbon footprint
and market power analyses are just a couple examples of
the work that is possible with a better understanding of the
electrical grid’s network structure.
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Figure 6. Electrical distances to loads for the PJM por-
tion of the US Eastern Interconnect. In this figure buses
are sorted by bus number in the model, which roughly
groups buses by geographic proximity.
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Figure 7. Electrical distances to loads for the PJM portion
of the US Eastern Interconnect. In this version of the
figure buses are sorted by the electrical distance at which
90% of the load can be reached.



5. Conclusions and implications for vulnerabil-
ity analysis

In this paper we have presented a number of results that
(1) characterize the topological structure of the US East-
ern Interconnect, (2) illustrate a new method for creating
synthetic power grid topologies, and (3) outline differences
between the electrical and topological structure of power
grids.

Regarding the topology of power grids we find that the
IEEE 300 bus case and the EI have a clearly exponential
degree distribution, showing that power grids are not Scale
Free in topology. This is a valuable result because it allows
us to confidently reject the hypothesis that the observed
power-law distribution in blackout sizes [20] does not re-
sult from a power-law in grid topology. On the other hand,
the electrical structure of power grids may provide some
insight into the power-law in blackout sizes. An investiga-
tion of this remains for future work. Also we find signifi-
cant differences between the EI model and an equivalently
sized Small World network, indicating that the Small World
model may not provide good insight for the study of power
grids. Finally we find that adjacent nodes in the the EI and
IEEE 300 systems have anti-correlated degrees (i.e. power
grids are dis-assortative), which differs somewhat from the
results reported in [27].

Having noted some unique properties of power grids,
we propose a new graph-generating algorithm, the mini-
mum distance graph, that produces random networks that
are roughly similar to what we find in power grids (aside
from the negative assortativity). In future work we plan to
refine the min dist algorithm and use it to test the hypoth-
esis that it provides a better representation of the structure
of built infrastructure networks (power grids, gas pipelines,
water distribution networks, etc.) then existing synthetic
network models.

Finally, we propose several ways for representing the
electrical structure of power grids, and find that this elec-
trical structure is profoundly different than the topological
structure. We suspect that these results will lead, in fu-
ture work, to new tools for risk identification and mitiga-
tion. For example, we conjecture that measures of electrical
distance to load will be useful in identifying buses that are
particularly important to the stability of the grid as a whole,
and therefore warrant additional hardening to random fail-
ure and directed attacks.
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