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Abstract—Cascading failures typically involve a wide variety
of power system dynamic phenomena, including cascading trans-
mission line overloads, generator tripping, voltage collapse and/or
rotor dynamic instability. Metrics that estimate proximity to
critical points with respect to any of these phenomena could
be useful as indicators of cascading failure risk. With the
growing deployment of phasor measurement units (PMUs) in
power systems, there is a rapidly increasing quantity of high-
resolution, time-synchronized phasor data available to operators.
Information in these data that could be formed into metrics
of proximity to critical transition could be valuable to system
operators who need to make timely, and costly, decisions to
avert large blackouts. This paper provides preliminary evidence
that time-series data alone, without intricate network models,
can signal a pending critical transition in power systems. Our
method is based on identifying “critical slowing down” in time
series data. Results from a single machine stochastic infinite bus
model and the Western US blackout of 10 August 1996 illustrate
the utility of the proposed method.

Index Terms—Cascading failures, power system monitoring,
power system reliability, synchrophasors.

I. INTRODUCTION

RELIABLE electricity infrastructures are vital to modern
societies, but are notably susceptible to large, cascading

failures. The disturbances of, for example, 14 August 2003
in North America [1], 4 November 2006 in Europe [2] and
10 November 2009 in South America [3] emphasize the
continued risk associated with large cascading outages. Given
that natural and human exogenous forces will occasionally
result in component failures and that large blackouts contribute
disproportionately to overall blackout risk [4], [5], there is a
continuing need for new approaches to the identification of
risks in power systems. Most, if not all, cascading failures
involve several types of dynamic phenomena such as:
• transmission line outages due to contact with vegetation

(thermal overload) or due to distance relay threshold
crossings

• generator outages resulting from off-nominal conditions
(e.g., over or under excitation)

• voltage collapse, or near voltage collapse
• generator rotor dynamic instability
• small-signal instability

With the implementation of synchronized phasor mea-
surement units (PMUs or synchrophasors) operators have
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increasing access to large quantities of high-resolution, time-
synchronized data. Methods that can turn these data into
information about operating risk could dramatically increase
the value of synchrophasor technology, and help operators
to make better decisions about when or if to implement
emergency operating procedures.

It is well known that the trajectory of eigenvalues (poles) in
a power system, or in any dynamical system, can be used to
predict critical transitions such as voltage collapse or dynamic
instability [6], [7], [8], [9]. However, the precise measurement
of eigenvalue trajectories in a large system requires accurate
models and large quantities of sensor data. Power system
failures sometimes progress across the boundaries of balancing
authorities, where sensor data are aggregated. Furthermore,
even within a balancing authority, cascading failures can
progress more quickly than the communications and com-
putational processes from which eigenvalues are calculated.
Therefore there is a need for tools that can identify emerging
risks without detailed, highly accurate, network models.

A number of methods for estimating blackout risk from
phase-angle data exist in the power systems literature. Recent
advances in the use of PMU data are described in [10],
[11]. Dobson [12] describes a method for estimating angle
differences between based on PMU measurements and circuit
theory. Senroy [13] describes a method for measuring phase
differences between groups of generators from time-series
data. This paper also looks at trends in PMU data that could
correlate to elevated blackout risk, focusing particularly on
methods for identifying signs of critical slowing down (CSD)
[14], which can be an early warning sign for bifurcation phe-
nomena. Building on substantial literature on CSD, Scheffer et
al. [15] describe methods for detecting proximity to transition
in a variety of complex dynamical systems through the use
of autoregression models. In this paper we apply the method
described in [15], [16] to a two bus, single machine infinite
bus power system model (SMIB) and data from the August 10,
1996 blackout in the Western North American Interconnection
(WI).

II. MEASURING CRITICAL SLOWING DOWN

As described in [15], noisy systems that are being driven
toward a critical point (e.g., a point of instability or oscillation)
frequently show a decrease in the rate at which the system
returns to equilibrium before reaching a point of critical
transition. This phenomenon is commonly known as “critical
slowing down,” and was originally described in models of
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emergent magnetic fields in ferro-magnetic materials [14].
Critical slowing down appears to signal proximity to a wide
variety of critical transitions in large complex systems such as
climate models before catastrophic climate change occurs [16]
and the human body before an epileptic seizure [17]. Similar
phenomena may be useful in signaling proximity to critical
transition in power grid models as well.

Given this background, the goal of this work is to develop
and test methods for identifying statistically significant signs
of critical slowing down in power systems. In each test we will
test the hypothesis that time-series voltage or phase-angle data
show measurable evidence of CSD during times of elevated
blackout risk.

In order to test this hypothesis we follow and build on
the procedure defined in [16], which describes the use of
autocorrelation (or autoregression) to test for criticality in
global climate models. The following steps summarize the
procedure used in [16], as adapted for this research, in which
we seek to identify CSD in a time domain signal x(t) (phase
angle, θ(t), and frequency, ω(t)).

1) Choose a window size within which to measure autocor-
relation. This window should be large enough to include
enough data to minimize the impact of spurious changes.
Choosing a window that is several times larger than one
period of the slowest oscillatory mode is generally a
good approach. In this paper we use a 2-minute window
size.

2) Filter the data in each window to remove gradual trends
that are not the result of CSD (e.g., the slow change of
phase angle at a bus due to a change in load). Following
the method in [16] we use a high-pass filter based on a
Gaussian Kernel Smoothing (x̂ = x−GKS(x)) function
to remove trends slower than 0.1 Hz (SMIB) or 0.2 Hz
(WI).

3) Choose a sample time-lag that will be used for the
autocorrelation calculation. In order to obtain the au-
tocorrelation coefficient for a 120 sec. window ending
at time t, using a 1.0 sec. time lag, we use the following
expression: ρ(t) =

∑t
τ=t−120

x̂(τ)x̂(τ−1)
σ2
x̂

, where ρ(t) is
the autocorrelation coefficient for the window that ends
at time t and σ2

x̂ is the variance in the signal within the
window.

4) Test for statistically significant increases in ρ(t) using
the nonparametric Kendall’s τ coefficient. Kendall’s τ
tests for serial dependence in a signal, against the
null hypothesis that the signal is random. This test is
performed at 30-second intervals.

5) Finally, in order to corroborate the findings from
Kendall’s τ , we measure the power spectral density
(PSD) of x̂(t) using a Welch spectral estimator[18],
which will show an increase in low-frequency compo-
nents if the system is slowing down.

The following sections describe the application of this method
to a single machine infinite bus model and data from the
August 1996 blackout in Western North America.

III. SINGLE-MACHINE STOCHASTIC-INFINITE-BUS
MODEL (SMSIB)

In this section we describe a modified version of the clas-
sical single machine infinite bus (SMIB) model, and outline
ways in which critical slowing down appears in this system.
In our two-bus model we gradually increase stress in the
system by linearly increasing the amount of power generated
by the generator. Also the infinite bus voltage (V2) is modified
by adding noise to the voltage source (sink). We model the
noise as a bandwidth-limited Gaussian white noise, where the
voltage at Bus 2 is:

V2(tk) = 1.0 + σVN ∀tk ∈ {0.00, 0.01, 0.02, · · ·}

(where σV is the standard deviation of the noise and N is
a Gaussian random variable), and V2(t) between the discrete
time steps, tk, is interpolated using a cubic spine. In this paper
we use σV = 0.01 for the noise magnitude. The noisy infinite
bus simulates the effect of exogenous, small, voltage flicker in
the larger system to which the generator is connected[19]. A
similar model, with noise in the generator power rather than
the infinite bus voltage, is explored in [20].

In our model, the generator is located at Bus 1, with terminal
voltage V1 = |V1| eiθ1 . It is modeled as a classical round rotor,
lossless generator that produces Pe(t) electric power as a result
of Pm(t) mechanical forcing. The generator has a constant
field voltage magnitude (Eq = 1.1 p.u.) behind a synchronous
reactance (Xd = 0.1). The rotor dynamics are governed by the
classical swing equation [?] with Pe(t) subject to the network
equations for this specific circuit:

Pm(t) = Pe(t) +Dδ̇(t) +Mδ̈(t) (1)

Pe(t) =
|Eq|V2(t)
Xd +X12

sin(δ(t)) (2)

where δ(t) is the machine rotor angle, relative to the phase
angle of the infinite bus (θ2 = 0), D and M are machine
damping and inertia constants and X12 is the reactance of the
transmission line between the two buses. The trajectories of
δ and θ1 are calculated using a variable step size, implicit
Runge-Kutta differential algebraic equation solver [21], [22].
The output data from the DAE solver (most notably |V1(t)| and
θ1(t)) are subsequently sampled at 30Hz to obtain simulated
outputs from a phasor measurement unit. The machine has
a damping constant of D = 1.5 p.u. and an inertia constant
of M = 3 p.u. The two buses are connected via a single
transmission line with impedance: Z12 = j0.1 p.u.

From (2) it is clear that the SMIB model becomes unstable
when Pm reaches Pm =

|Eq|V2(t)
Xd+X12

. The poles of the swing
equation (1) can be found from the eigenvalues of the lin-
earized state matrix:

F =

[
0 1

−EqV2

M(Xd+X12)
cos δ(t) − D

M

]
(3)

Figure 1 shows the poles of this system for different values of
δ. As δ increases, such as results from increasing the mechan-
ical power into the machine (Pm), the imaginary portions of
the eigenvalues of F converge toward the origin, until shortly
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Figure 1. Real (above) and imaginary (below) components of the poles of
the linearized state matrix F (1) at different values of δ. In our model Pm

increases linearly over time and, for steady state conditions, δ is a direct
function of Pm, from (2). Thus the critical frequency of the system gradually
decreases as Pm increases, which means that lower frequency elements in
the noise will be amplified and recovery times will increase.

before δ = π/2, they meet at the real axis. At this point the
poles of the system lie on the real axis with the right-most
eigenvalue quickly crossing into the right half plane, leading to
system instability. Critical slowing down is apparent in several
ways. As the dominant frequency of the system decreases
the relaxation time will increase, which is a symptom of
critical slowing down. Also, as the poles near the point at
which the system transitions from oscillatory to exponential,
small changes in δ or in the noise (V2) will substantially
change the dominant frequencies in the system, which will
result in a wider range of frequencies being accentuated. This
phenomena is sometimes apparent as flicker, another sign
of critical slowing down. Both of these phenomena can be
observed in the power spectral density of the signal as an
increase in the power of lower-frequency components. These
phenomena will also result in an increase in autocorrelation.

Another way to visualize critical slowing down is to look at
a vector field showing the basin of attraction for SMIB model
if it is perturbed from its steady state conditions (Fig.

A. Stochastic models for the infinite bus

In future work we plan to model the noise in V2 with a
Ornstein-Uhlenbeck mean reverting process (OU)[23], [24].
The OU process models a continuous signal u(t) that wavers
randomly but tends to revert to a mean level µu. It is given
by the stochastic differential equation (SDE)

du(t) = η(µu − u(t))dt+ σudWt

u(0) = u0

where η is the speed of mean reversion, σu is the short term
standard deviation and Wt is a Wiener process.

Using the Ito interpretation [24] we can rewrite the solution
of the SDE as a Gaussian model where given u0, the value
of u(t) is normally distributed with mean µ = µu + (u0 −
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Figure 2. Vector field diagram showing the basin of attraction and the forcing
vectors for the two-bus system for a lightly loaded case (Pm = 1.0p.u., left)
and for a heavily loaded case (Pm = 4.0p.u., right). For the lightly loaded
case the basin of attraction is fairly narrow, whereas in the heavily loaded
case the basin includes a large area with small force vectors. In this case
small perturbations could result in substantial deviation from the point of
equilibrium and recovery times will increase.

µu)e
−ηt and variance σ2 =

σ2
u

2η (1− e
−ηt). In order to provide

the DAE solver with a continuous process, we interpolate the
realization of the WGN vector (µ = V2 = 1.0∠0◦ p.u. and
σ2 = 0.0001 p.u. ) with the method of cubic splines.

B. Two-bus model results

Fig. 3 shows the results that emerge from the two bus
model as it is forced toward the maximum power transfer
limit. Providing evidence in support of the hypothesis, the
autocorrelation in the phase angle data at Bus 1 increases
notably minutes before the system hits the point of maximum
power transfer. Kendall’s τ (lower panel in Fig. 3) indicates
that this increase is statistically significant. Furthermore the
power spectral density of the signal (middle panel) shows
substantial increases in low-frequency signal power as the
system approaches the critical transition. The variance in the
signal similarly increases steadily throughout the simulation.

IV. WESTERN INTERCONNECT BLACKOUT OF AUGUST
1996 (WI)

On August 10, 1996 a long sequence of events resulted in
the separation of the North America Western Interconnection
into five sub-grids and the interruption of electric service to 7.5
million customers. Reference [25] describes the sequence of
events leading up to the blackout, and [26] provides a detailed
analysis of the power system dynamics during the event.
In [25], the WSCC (now Western Electricity Coordinating
Council, WECC) disturbance study committee provided about
10 minutes of measured bus voltage frequency data from
the Bonneville Power Administration territory, up until just
after the point of grid separation. In order to test for CSD
in these data, the printed frequency charts were scanned and
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Figure 3. Evidence of critical slowing down in a two-bus (SMSIB) power
grid model being driven toward the point of maximum power transfer. The
middle panel shows the power spectral density of the signal (the phase angle at
Bus 1, θ1) for vertically projected time intervals. The dashed curves indicate
the 95% confidence margins for the PSD estimate. Numbered arrows illustrate
the measure of Kendall’s τ coefficient at 30-second intervals. *Indicates that τ
is statistically significant at the P < 0.05 level, which indicates a statistically
significant increase (or decrease) in autocorrelation.

translated into a numerical time series and the tests described
above were repeated. As was found with the two-bus model,
autocorrelation in the frequency signal increases significantly
as the critical transition approaches, as does the power spectral
density of low frequency changes (See Fig. 4). Kendall’s τ
shows that the increases in autocorrelation are statistically
significant.
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Figure 4. Evidence of critical slowing down in the frequency as measured
at the Bonneville Power Administration, immediately before the blackout of
August 10, 1996. As in Fig. 3, the low-frequency components of the signal
(middle panel) increase notably immediately before the transition occurs.

V. CONCLUSIONS

In this paper we describe a method for testing for critical
slowing down in power systems and provide evidence that
CSD is present as power systems approach a point of dynamic

instability. The results indicate that critical slowing down
could be useful in identifying operating states with unusually
high dynamic risk. Unlike traditional stability methods, the
proposed statistical approach uses only high-resolution time
data and could therefore be useful even if SCADA/EMS
systems fail, so long as the operator has access to time
synchronized phasor data.

While this measure alone is not a perfect indicator of
cascading failure risk, it may prove useful, when combined
with other indicators of power system cascading failure risk, in
the development of an aggregate measure of cascading failure
risk.

REFERENCES

[1] USCA, “Final Report on the August 14, 2003 Blackout in the United
States and Canada,” US-Canada Power System Outage Task Force, Tech.
Rep., 2004.

[2] UTCE, “Final Report System Disturbance on 4 November 2006,” Union
for the Co-ordination of Transmission of Electricity, Tech. Rep., 2007.

[3] Dam failure triggers huge blackout in Brazil, 2009.
[4] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, “Evidence

for Self-Organized Criticality in a Time Series of Electric Power System
Blackouts,” IEEE Transactions on Circuits and Systems–I: Regular
Papers, vol. 51, no. 9, pp. 1733–1740, 2004.

[5] P. Hines, J. Apt, and S. Talukdar, “Large blackouts in north america:
Historical trends and policy implications,” Energy Policy, vol. 37, pp.
5249–5259, 2009.

[6] H.-D. Chiang, I. Dobson, R. Thomas, J. Thorp, and L. Fekih-Ahmed,
“On voltage collapse in electric power systems,” IEEE Transactions on
Power Systems, vol. 5, no. 2, pp. 601–611, 1990.

[7] I. Dobson, J. Zhang, S. Greene, H. Engdahl, and P. W. Sauer, “Is
strong modal resonance a precursor to power system oscillations?”
IEEE Transactions on Circuits and Systems–I: Fundamental Theory and
Applications, vol. 48, no. 3, pp. 340–349, 2001.

[8] X. Wen and V. Ajjarapu, “Application of a novel eigenvalue trajectory
tracing method to identify both oscillatory stability margin and damping
margin,” IEEE Transactions on Power Systems, vol. 21, no. 2, 2006.

[9] Critical Eigenvalues Tracing for Power System Analysis via Continu-
ation of Invariant Subspaces and Projected Arnoldi Method, vol. 22,
2007.

[10] C. Taylor, D. Erickson, K. Martin, R. Wilson, and V. Venkatasubrama-
nian, “WACS-wide-area stability and voltage control system: R&D and
online demonstration,” Proceedings of the IEEE, vol. 93, pp. 892– 906,
2005.

[11] J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized
phasor measurement applications in power systems,” IEEE Transactions
on Smart Grid, vol. 1, no. 1, pp. 20–27, 2010.

[12] I. Dobson, “New angles for monitoring areas,” in Proceedings of Bulk
Power System Dynamics and Control - VIII, Rio de Janeiro, Brazil,
August 2010.

[13] N. Senroy, “Generator coherency using the hilbert–huang transform,”
IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1701–1708,
2008.

[14] D. S. Fisher, “Scaling and critical slowing down in random-field ising
systems,” Physical Review Letters, vol. 56, no. 5, pp. 416–419, 1986.

[15] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter,
V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara, “Early-
warning signals for critical transitions,” Nature, vol. 461, pp. 53–59, 3
September 2009.

[16] V. Dakos, M. Scheffer, E. H. van Nes, V. Brovkin, V. Petoukhov, and
H. Held, “Slowing down as an early warning signal for abrupt climate
change,” Proceedings of the National Academy of Sciences, vol. 105,
no. 38, pp. 14 308 –14 312, Sept. 2008.

[17] P. McSharry, L. A. Smith, and L. Tarassenko, “Prediction of epileptic
seizures: are nonlinear methods relevant?” Nature Medicine, vol. 9,
no. 3, pp. 241–242, 2003.

[18] F. Harris, “On the use of windows for harmonic analysis with the discrete
fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83,
1978.

[19] R. Wiltshire, G. Ledwich, and P. O’Shea, “A kalman filtering approach
to rapidly detecting modal changes in power systems,” Power Systems,
IEEE Transactions on, vol. 22, no. 4, pp. 1698–1706, 2007.



5

[20] D. Q. Wei and X. S. Luo, “Noise-induced chaos in single-machine
infinite-bus power systems,” Europhysics Letters, vol. 86, no. 5, p.
50008, 2009.

[21] K. Brenan, S. Campbell, S. Campbell, and L. Petzold, Numerical
solution of initial-value problems in differential-algebraic equations.
Society for Industrial Mathematics, 1996.

[22] L. Shampine, M. Reichelt, and J. Kierzenka, “Solving index-i daes in
matlab and simulink,” SIAM review, vol. 41, no. 3, pp. 538–552, 1999.

[23] G. Uhlenbeck and L. Ornstein, “On the theory of the brownian motion,”
Physical Review, vol. 36, no. 5, pp. 823–841, 1930.

[24] B. Øksendal, Stochastic differential equations: an introduction with
applications. Springer Verlag, 2003.

[25] WSCC Operations Committee, “Western Systems Coordinating Council
Disturbance Report For the Power System Outages that Occurred on
the Western Interconnection on August 10, 1996,” Western Systems
Coordinating Council, Tech. Rep., 1996.

[26] V. Venkatasubramanian and Y. Li, “Analysis of 1996 western american
electric blackouts,” in Proceedings of Bulk Power System Dynamics and
Control - VI, Cortina d’Ampezzo, August 2004.

AUTHOR BIOGRAPHIES

PLACE
PHOTO
HERE

Paul D. H. Hines (S’95, M’07) is an Assistant Pro-
fessor in the School of Engineering at the University
of Vermont. He is also a member of the Carnegie
Mellon Electricity Industry Center Adjunct Research
Faculty and a commissioner for the Burlington Elec-
tric Department. He received the Ph.D. in Engineer-
ing and Public Policy from Carnegie Mellon U. in
2007 and the M.S. degree in Electrical Engineer-
ing from the U. of Washington in 2001. Formerly
he worked at the US National Energy Technology
Laboratory, where he participated in Smart Grid

research, the US Federal Energy Regulatory Commission, where he studied
interactions between nuclear power plants and power grids, Alstom ESCA,
where he developed load forecasting software, and for Black and Veatch,
where he worked on substation design projects. His main research interests
are in the areas of complex systems and networks, the control of cascading
failures in power systems and energy security policy.

Eduardo Cotilla-Sanchez is a Ph.D. student in Electrical Engineering in
the School of Engineering at the University of Vermont. He earned the M.S.
degree in Electrical Engineering from the University of Vermont in 2009.
His primary research interests include complex systems and evolutionary
computation, in particular, the application of these disciplines to power and
energy systems.

Benjamin O’Hara is an undergraduate student in Mathematics in the College
of Engineering and Mathematical Sciences at the University of Vermont.

Christopher Danforth is an assistant professor in the Department of Math-
ematics and Statistics at the University of Vermont.


