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ABSTRACT
This paper describes work-in-progress toward the develop-
ment of a dynamic model of cascading failure in power sys-
tems that is suitable for High Performance Computing sim-
ulation environments. Doing so involves simulating a power
grid as a set of differential, algebraic and discrete equations.
We describe the general form of the algorithm in use for this
simulation and provide details about the implementation us-
ing the Trilinos software libraries. Several computational
tests illustrate how the proposed approach can be leveraged
to optimize the computational efficiency of cascading failure
simulation.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Engineering

General Terms
Algorithms, Performance

Keywords
Power Systems, Cascading Failures, High Performance Com-
puting, Trilinos

1. INTRODUCTION
The n − 1 security criterion is an effective heuristic for re-
liable power power grid operations so long as multiple con-
tingencies do not occur simultaneously [18]. If multiple el-

ements fail simultaneously (an n − k contingency), NERC
reliability standards [17] allow utilities to implement emer-
gency control policies, such as load shedding, to reduce the
risk of cascading outages that could result. However some
control policies that would appear to reduce risk can have
unexpected long-term outcomes [9]. Verifying that a given
control policy is effective at reducing blackout risk over all
possible n − k contingencies requires a prohibitively large
number of simulations. Exhaustively calculating the reac-
tion of a system with n = 104 components to only n−2 and
n−3 contingencies requires on the order of 1011 simulations.
Furthermore, accurately calculating the effect of n− k con-
tingencies requires one to consider not only the immediate
overcurrent and undervoltage conditions that result from the
outages, but the potential cascading sequences that can oc-
cur after the initial overloads. This substantially increases
the computational burden associated with the analysis of
n− k events.

There are a number of methods available that can reduce
the computational requirements for cascading failure analy-
sis [24]. For example, one can reduce the number of contin-
gencies that need to be considered through careful contin-
gency screening [8, 3]. However, for the n = 104, k = 3 case,
reducing the number of simulations by, for example, 99.9%,
still leaves 108 potential cascading outage sequences to run.
Another approach is to reduce the computer time needed
for individual simulations by using simplifying assumptions,
such as developing models based on the dc power flow equa-
tions. However, doing so requires that some mechanisms
of cascading failure, such as voltage collapse and dynamic
instability, must be ignored. While the use of simplified
models is often appropriate, little to no existing work has
systematically compared the statistical differences between
dynamic and sequential steady state models of cascading
failure. Finally, high performance computing (HPC) can be
harnessed by running many simulations in parallel. As with
contingency screening, this approach also has limitations,



given the enormous size of the search space.

The long-term goal of this project is to use a combination
of these approaches by reducing the model order to decrease
simulation time, optimizing the numerical methods, care-
fully screening the number of simulations required using
statistical methods (e.g., [7]) to gain insight from a limited
number of simulations, and finally harnessing HPC to per-
form simulations in parallel. It is our conjecture that us-
ing dynamic models for cascading failure analysis, and com-
paring the results from dynamic models with results from
steady-state contingency analysis methods will produce ad-
ditional insight, over that which would come from steady-
state methods alone. Future work will explore methods to
combine these approaches. However, the goal of this paper
is to present incremental results toward the development of
a fully dynamic cascading failure model, which is optimized
for use in a HPC environment.

The increased accessibility of HPC systems has led to a re-
cent increase in effort to develop methods to improve the
computational efficiency of time-domain power system sim-
ulators. One of the most significants efforts in this regard
comes from the PEGASE Consortium in Europe, which has
published a comprehensive report about the simulation of
large power systems and the requirements with respect to
algorithms and computing capabilities [2]. They propose a
method that can simulate events in a pan-European dynamic
grid model at 1/3 of real time. Among their results, they
report that the linear solvers KLU [21] and Pardiso [20] are
particularly efficient at solving power system matrix equa-
tions. Relatedly, Khaitan and McCalley [15, 14] report that
multi-frontal pre-conditioners can be effectively applied to
the solution of the differential algebraic equations (DAEs)
that form the core of numerical power system simulation.
Several US National Laboratories have leveraged experience
with HPC to develop efficient algorithms for grid simula-
tion. Chen et al. [1] and Jin et al. [11] improve the speed of
contingency selection by developing dynamic load balancing
schemes over parallel systems. Outside of the power systems
field, the Xyce simulation code [12] exploits parallelism to
efficiently and accurately solve the DAEs associated with
large-scale integrated circuits. Much of the technology in
Xyce is being harnessed in this project through the Trilinos
software libraries [10].

This paper describes the software implementation (in-pro-
gress) of a dynamic cascading failure simulator using soft-
ware packages from Trilinos [10]. Trilinos is a suite of pack-
ages for solving large-scale numerical problems within HPC
environments. The software suite provides both serial and
parallel computing capabilities. Our simulator makes direct
use of Trilinos’ interfaces to linear system solvers, the non-
linear algebraic system solver (NOX), and the DAE solver
Rythmos, as well as a number of the other linear algebra
and utility packages. Developing this simulation with Trili-
nos provides the project with access to a wide variety of
numerical algorithms, facilitating the ability to perform nu-
merous computational experiments.

2. MODELING CASCADING FAILURE AS
A SYSTEM OF DIFFERENTIAL, ALGE-
BRAIC, AND DISCRETE EQUATIONS

It is well known that the power grid can be represented as
a system of differential (f) and algebraic (g) equations [16].
When the important power system dynamics include dis-
crete changes, such as is the case during cascading failure, a
set of discrete equations (h) should be added to this system,
such that:

dx(t)
dt

= f(t,x(t),y(t), z(t)) (1)

0 = g(t,x(t),y(t), z(t)) (2)

0 > h(t,x(t),y(t), z(t)) (3)

where x(t) is a vector of continuous electro-mechanical state
variables that change with time according to the differential
equations, y(t) is a vector of continuous state variables that
have purely algebraic relationships to other variables in the
system, and z(t) is a vector of state variables that can take
only binary or integer states (zi ∈ [0, 1, 2, ...]). In our for-
mulation each discrete variable zi(t) is governed by an equa-
tion (3) that indicates a discrete state change at the instant
in time that hi(t) crosses the origin. When these discrete
changes occur the electro-mechanical variables x(t) do not
change across the small discrete time interval:

lim
�→0

x(t+ �) = x(t)

whereas the algebraic variables are allowed to change instan-
taneously.

Assuming that we desire to simulate the impact of k branch
(transmission line or transformer) outages occurring at time
points t1 ≤ t2 ≤ ... ≤ tk over the time interval [t0, te] such
that t0 < t1 and tk < te, the algorithm for simulating the
potential cascading outage is the following:

1. Set the exogenous event number r = 0 and the current
time: t = t0.

2. If a discrete event occurs at time t:

(a) Implement the event by changing the discrete vec-
tor from z(t) to z(t+ �)

(b) Solve for the change in the algebraic variables
across the infinitesimal time interval t → t + �
by solving for y(t + �) in the non-linear system
(2):

0 = g(t,x(t),y(t+ �), z(t+ �))

(c) Set t = t+ �.

3. Simulate the DAE system (fg) from t until either a
discrete threshold is reached (hi = 0) for any i, or
t = tr+1.

(a) Return the simulation end time, t ≤ tr+1, the
differential variable trajectory x([tr, t]), and the
algebraic variable trajectory y([tr, t]).

(b) If t < tr+1 record the element (relay) affected by
the endogenous discrete change.

(c) If t = tr+1 increment r = r + 1.



4. If t < te repeat from 2.

Note that similar approaches are used in mid-term stability
simulation [16] studies. Here we describe the algorithm to
place careful attention on the process of handling discrete
events. The general problem of solving Ordinary Differ-
ential Equations with discontinuous equations is a notably
challenging one. The method proposed here essentially as-
sumes that there exists a real-valued solution to the alge-
braic equations after change in the discrete variables (2).
Clearly there are problems in which this is not the case.
See [22] for a detailed discussion of degenerate cases for dis-
continuous ODEs. Additional research is needed to improve
algorithms of this sort to robustly handle discontinuities in
power system dynamic studies.

2.1 Power system model
To adapt this general formulation to the specific power sys-
tem case, we model a power network as a system of transmis-
sion lines, transformers, simulated loads, and dynamic ro-
tating generators, using the traditional ac network equations
and a somewhat reduced order rotating machine model. The
following subsections provide some detail about our formu-
lation.

2.1.1 Algebraic equations
The algebraic equations in our model use the standard pair
of ac active and reactive power flow equations, as is com-
mon in most power system models. However, note that the
equations employ impedances that are based on the 60Hz
frequency response of the network. Yet, during extreme
events, the fundamental frequency commonly deviates from
60Hz. Additional research is needed to determine whether
one would obtain more accurate results from frequency de-
pendent impedance models. Given the constant impedance
assumption, the active nodal power injection balance is:

Pg,i(δm,i, E
�
a,i, |Vi|, t)− Pd,i(|Vi(t)|, t) (4)

=
n�

k=1

|Vi||Vk|(gik cos θik + bik sin θik)

where Pg,i is the real power output of the generator at bus
i and Pg,i(t) = 0 for non generator buses. Pg,i for generator
buses is given by:

Pg,i(t) =
E�

a,i|Vi|
X�

d,i
sin(δm,i)... (5)

+ |Vi|2
2

�
1

Xq,i
+ 1

X�
d,i

�
sin(2δm)∀i ∈ G

and Pd,i represents the load at bus i. Using standard nota-
tion, δm,i is the generator machine rotor angle relative to the
terminal bus voltage phase angle θi, E

�
a is the sub-transient

machine voltage, |Vi| is the per unit terminal bus voltage,
and gik and bik are the corresponding real and imaginary
elements of the system admittance matrix (YBUS). |Vi| and
θi are algebraic variables in y, whereas δm and E�

a are dif-
ferential variables in x.

In our model we extend the well-known ZIP (impedance,
current, power) representation of electrical loads with a time
invariant exponential term (resulting on a“ZIPE”load model).

The exponential portion of the load has the following power-
voltage relationship:

Sd,i(|Vi(t)|, t) = Sd,i(t)|Vi|γ .

Using the exponential model, rather than constant power,
ensures that power consumption approaches zero as |Vi| ap-
proaches zero, which is important for the simulation of ex-
treme events, such as cascading failure.

Similarly, (6) describes the reactive power balance for bus i.

Qg,i(δm,i, E
�
a,i, |Vi|, t)−Qd,i(|Vi|, t) (6)

=
n�

k=1

|Vi||Vk|(gik sin θik − bik cos θik)

where Qg comes from:

Qg,i(t) =






E�
a,i|Vi|
X�

d,i
cos(δm,i)...

−|Vi|2
�

cos(δm,i)
2

X�
d,i

+
sin(δm,i)

2

Xq,i

�
∀i ∈ G

0 ∀i /∈ G

2.1.2 Differential equations
In this formulation we use differential equations (f) only to
represent generator dynamics. Many have shown that loads
also have dynamical behaviors, but in the current instanti-
ation we neglect load dynamics. Our generator model con-
sists of the standard second order swing equation, coupled
with a second order salient pole generator model, second
order droop-control governor model and a second order ex-
citer/voltage control model. The exact details of this gener-
ator model are currently being finalized. With two variables
in each of the generator, governor and exciter, the DAE in-
dex is 2.

2.2 DAE solution methods
A wide variety of methods exist for solving DAE systems,
each with advantages and disadvantages in terms of compu-
tational complexity, numerical stability, and numerical ac-
curacy [23]. Most modern solution methods divide the solu-
tion process into the the four numerical processes described
below, each of which is dependent on the lower level process.

The highest level process is Discrete time integration, in
which a time step size h is chosen, and x(t+h) and y(t+h)
are calculated based on x(t), y(t), and z(t). This is han-
dled in Trilinos by the Rythmos package, and requires the
solution of non-linear systems of equations.

The Non-linear system solution step involves solving set of
implicit non-linear equations to find x(t + h) and y(t + h)
that are consistent with the DAE system and the state at
time t. The form of these equations depends on the inte-
gration method (implicit vs. explicit, order, etc.). Typically
the non-linear system is solved using a variant of Newton’s
method, which involves solving a series of linear systems,
Ax = b

1 for x or J(xn−1)(x + xn−1) = −F (xn − xn−1)
for x+xn−1 where J is the system’s Jacobian matrix evalu-
ated with xn−1, F is a vector of equation residuals evaluated

1Note that here x refers to a generic vector, whereas x refers
to the differential variables above.



with xn−1. Section 4 describes results comparing different
methods to solve the non-linear systems.

Linear system solution. The series of systems, Ax = b, gen-
erated through the linearization of the non-linear system are
sparse, so both iterative and direct solution methods can be
used to find the search direction x. Direct methods require
a matrix factorization, which generally does not scale well
for large systems and suffers from limited parallelism. For
very large linear systems, with more than 105 unknowns,
it is generally preferable to use iterative solution methods,
which have improved parallel scalability, provided an effi-
cient preconditioner is available.

In general, an efficient preconditioner solves a linear prob-
lem Âx̂ = b̂, where Â is an inexpensive approximation of
A that accelerates the convergence of the iterative method
to compute x. For power system simulation, one proposed
approach to preconditioning is to occasionally factor the sys-
tem Jacobian A with a sparse direct method and use these
exact factors to compute x̂. This can be used to precondi-
tion A for some specified number of non-linear iterations or
until the solution error (||Ax̂− b||) exceeds some threshold
before recalculating the factorization.

For smaller linear systems, sparse direct methods are more
often utilized, and require the factorization of the matrix
A into components that can be applied through triangular
solves. For non-symmetric matrices, a common numeric fac-
torization is the LU factorization, that decomposes a matrix
A into a lower triangular matrix, L, and an upper triangular
matrix, U, such that A = LU. If L and U are sufficiently
sparse, it is computationally inexpensive to solve Ly = b

and then Ux = y for x with Gaussian elimination to solve
Ax = b. To maximize the sparsity in L and U, symbolic
reordering algorithms can be applied to A. Reducing fill-
in in these factors is necessary as the computational cost of
factoring A and the resulting triangular solves are related to
the number of non-zeros in L and U. Thus, a good symbolic
reordering of A can speed up the numeric factorization if it
allows for a smaller memory allocation for non-zero entries
and less floating point operations (FLOPs) to compute L

and U. The symbolic reordering only needs to be done once,
if the nonzero pattern (graph) of A is static, and reused in
all subsequent numerical factorizations. For the cascading
failure simulation case, the nonzero pattern will remain con-
stant so long as the discrete state of the system (z) remains
unchanged (e.g., branches are not switched).

2.3 Methods to parallelize the DAE solution
process

While this paper does not directly describe results from
parallel simulation, there are a number of places in which
parallel computer architectures might be employed to im-
prove DAE solution speeds. The obvious starting point is to
parallelize the linear system solution process. As discussed
in [14], existing codes for iterative linear system solution
can exploit parallel architectures. However, producing the
pre-conditioner, generally requires a direct linear solver (like
UMFPACK or KLU). Few codes exist for direct linear sys-
tem solution that employ parallelism. And, our tests indi-
cate that one code that is parallel (SuperLU) does not per-
form well for power system matrices. An effort to produce

direct linear solvers that both work well for power systems
matrices and exploit parallel architectures, would be notably
valuable. It is important to note, however, that power sys-
tem matrices (likely to be on the order of 105 variables) tend
to be relatively small, when compared to those that result
from many DAE problems, for which parallel methods have
be successful. Given the relatively small size of the matrices,
the classic tradeoff between interprocess communication and
increased parallelism becomes particularly important.

Solving other components of an individual simulation in par-
allel is very difficult, since the solution process is trajectory
dependent.

3. COMPARING NUMERICAL METHODS
USED IN SOLVING POWER SYSTEM
DIFFERENTIAL ALGEBRAIC
EQUATIONS

As explained above, numerically integrating a system of
differential-algebraic equations involves a hierarchical stack
of numerical methods. The discrete time integration involves
non-linear system solution methods, which subsequently re-
quire linear system solution methods, which further often
involve matrix factorization. This section describes results
from using Trilinos packages to interface the power system
equations with a DAE integrator (the Rythmos Package via
the Piro interface). We used the Rythmos/Piro tools to
solve aspects of the DAE solution problem using a variety
of numerical method packages and options, with the inten-
tion of optimizing the accuracy and speed performance of
large power system simulations in the future. This section
provides a number of results that illustrate how Trilinos,
and packages like it, can be to compare different numerical
solution methods to a variety of power system simulation
problems.

3.1 Comparing direct linear solvers for effi-
cient solution of power systems equations

Firstly we evaluated the relative merits different approaches
to factorizing power system matrices. We do so using a
power flow Jacobian matrix, which derives from the system
algebraic equations (2). The power flow Jacobian differs
somewhat from the Jacobian of the non-linear system that
would be solved during DAE integration, but includes the
most challenging portions of that matrix: the power flow
constraints (4) and (6). Our power flow matrix is formu-
lated from a model of the Polish power grid, which is pub-
licly available with MATPOWER [25]. Figure 1 shows the
locations of the nonzero elements (the sparsity structure) for
this test matrix. This Jacobian is unsymmetric, extremely
sparse (0.14% non-zero entries), and moderately sized with
4439 variables. For comparison purposes, power flow models
of the US Eastern Interconnect contain on the order of 105

variables.

We factorized this test matrix using algorithms from four
software packages, each of which was interfaced through
Trilinos’s Amesos package [19]. The four numerical packages
that we tested were LAPACK, a library providing routines
for solving linear systems with dense matrices; SuperLU, a
library for the direct solution of large, sparse, non-symmetric
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Figure 2: The lower triangular matrices (L) that result from UMFPACK’s and KLU’s symbolic reordering

and numeric factorization. The symbolic reordering of the Polish power flow Jacobian (Fig. 1) for each

method rearranges the Jacobian into a graph that is more efficient for numeric factorization. UMFPACK’s

decomposition after COLAMD (panel a) and METIS (panel b) ordering allocates fewer non-zero entries than

three of KLU’s methods. Although UMFPACK allocates a similar number of non-zeros as KLU’s BTF AMD

decomposition, we find UMFPACK be less efficient largely due to the fact that UMFPACK treats portions of

the numeric factorization problem using dense matrix methods, and power system matrices are very sparse,

even along the diagonal after reordering. Of the 4 methods available with KLU: AMD with (panel c) or

without BTF (panel d) and COLAMD with (panel e) or without (panel f) BTF, we find that AMD ordering

with BTF factorization allocates the least number of non-zeros and performs the fastest. The block triangular

form does not contain true BTF blocks and therefore does not have the properties that would substantially

simplify a linear solve, although the AMD ordering indirectly benefits from BTF factorization by allocating

a sixth of the non-zero entries than without it.
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linear systems [6]; UMFPACK, a package for solving unsym-
metric sparse linear systems with the Unsymmetric Multi-
Frontal method [5]; and KLU, a sparse LU factorization al-
gorithm designed for use in circuit simulation [4]. Table 1
compares solution times for each of these solvers. It is im-
portant to note that the symbolic ordering process typically
would occur only once between discrete changes in a cascad-
ing failure model, whereas the numeric factorization would
need to occur numerous times, making this stage particu-
larly critical to the simulation. Our results indicate that
KLU performs numeric factorization dramatically (at least
four times) faster than all other packages. LAPACK per-
forms poorly because it does not exploit the sparsity of the
power system matrices.

We further analyzed the results from KLU and UMFPACK.
KLU and UMFPACK together contain two symbolic re-
ordering algorithms, Approximate Minimum Degree Order-
ing (AMD) and Column Approximate Minimum Degree Or-
dering (COLAMD), and an interface to a third-party sym-
bolic reordering package, METIS (see Fig. 2 for illustrations
of the sparsity patterns of the Jacobian after factorization).
KLU contains algorithms that attempt to factorize the ma-
trix into Block Triangular Form (BTF) which can be used
to further reduce the computational complexity in a linear
solve by allowing only a portion of permuted sub-matrices to
be numerically factorized. However, the Polish power flow
Jacobian matrix’s block triangular form does not show evi-
dence of significant block triangular structure, which means
that this is not the source of KLU’s relative efficiency. How-
ever, we do observe that the AMD ordering used by KLU
and UMFPACK indirectly benefit from BTF factorization

by allocating only a sixth of the non-zeros in the factor-
ized matrix, relative to the case without AMD ordering (see
Table 2). Although UMFPACK allocates a similar num-
ber of non-zeros as KLU in factorized matrices, after BTF
and AMD ordering, it performs 3 times as many floating
point operations (FLOPs) as KLU. This difference appears
to be the result of the fact that UMFPACK uses dense rou-
tines from level-3 BLAS to process the frontal sub-matrices,
whereas KLU handles the frontal sub-matrices using sparse
codes. From Fig. 2, we note that UMFPACK’s factoriza-
tion does not contain dense sub-matrices, which indicates
that significant amounts of CPU time and memory are be-
ing unnecessarily expended on zero-valued entries.

3.2 Comparing non-linear solvers for efficient
solution of power systems equations

There are two cases in our simulator where it is necessary
to solve non-linear algebraic equations. The first is to gain
consistent algebraic conditions for a differential-algebraic in-
tegration by solving for y(t) (or y(t+�)) in Eq. 2, given x(t)
and z(t). This occurs most notably after discrete changes in
the system. The second case is during differential-algebraic
integration, when solving a system of equations to find x(t+
h) and y(t+h) given the variables at time t. In this section
we describe tests that compare the computational time re-
quired to find y(t + �) after a discrete change in the IEEE
39 bus system.

There are many algorithms for iteratively solving non-linear
systems, however the general algorithm involves four steps
to iteratively find some x that solves g(x) = 0. The first
is to evaluate the error of the current solution estimate x̂:
ĝ = ||g(x̂)|| and to stop if ĝ is sufficiently small. The second
is to choose a search direction p. The familiar Newton-
Raphson algorithm choses the search direction by linearizing

g around the current estimate: p = −
�
dg
dx

�−1
g(x̂). The

third step is to choose a step size α such that ||g(x̂+αp)|| is
closer to zero than ||g(x̂)||. Finally, once a sufficiently good
step size is chosen the current solution estimate is updated:
x̂ = x̂+ αp.

Different solution methods approach each of these stages
differently, and have various advantages and disadvantages.
For example, line search methods work to find a step size
that minimizes ||g(x̂+ αp)|| at each iteration. Trust region
methods limit the step size to be within a region that is
known to be approximately linear. A detailed description
of non-linear solution approaches is available in, for exam-
ple, [13]. Through our interface with Trilinos’ non-linear
solver package, NOX, we test 3 types of nonlinear solvers
(Line Search Based, Trust Region Based, and Inexact Trust
Region Based) with 4 types of directional options (Newton,
Steepest Descent, Nonlinear Conjugate Gradient, Broyden)
and 4 types of line-search options (Full Step, Backtrack,
Polynomial, More-Thuente).

Table 3.2 gives the average time for each solver option tested.
The average time for many of the algebraic solves hovers
around the timing resolution (0.01 seconds) of the machine
running the tests. So, 300 consecutive algebraic equations
were solved, timed, and then averaged. In future work we
plan to run these tests over a wide variety of system con-



Table 1: Power system matrix factorization times (seconds) for several linear solver packages

LAPACK SuperLU UMFPACK KLU
Symbolic Reordering Time NA NA 0.005 0.0030
Numeric Factorial Time 6.2180 0.0154 0.0192 0.0037

Solve Time 0.0488 0.0009 0.0030 0.0003
Total Time 6.2668 0.0163 0.0272 0.007

Residual Norm 8.12e-12 1.05e-11 7.59e-12 9.64e-12

Table 2: UMFPACK and KLU Ordering Statistics.

Direct Linear Solver Package KLU UMFPACK
Symbolic Ordering Method AMD COLAMD COLAMD METIS

Block Triangular Factorization Yes No Yes No NA NA
Symbolic and Numeric MFlops (CPU time) 8.72 56.15 1.69 1.64 28.61 27.75
Number of Non-zeros in L+U (in thousands) 58.73 388.73 82.55 80.92 62.15 64.56

Peak Memory Usage (MBytes) 1.73 15.07 7.30 7.30 NA NA

ditions, with a much larger system. Despite the small size
of our system, the results illustrate the utility of using a
generic numerical solver package in understanding the rela-
tive merits of different numerical methods.

3.3 Integrator interface for efficient solution
of power system equations

The next stage in our testing involves testing various meth-
ods for combining the results in Section 3.1 and 3.2 to solve
DAE systems. Currently, we have interfaced our power
system model with Trilinos’s Rythmos integrator package
through Trilinos’s Piro interface. There are two integra-
tors available through Rythmos: a simple fixed step back-
ward Euler method and a backward differentiation formula
method of orders 1 through 5 with variable-step size. How-
ever, only the simple backward Euler method is currently
available through the Piro interface. Using this integrator
we have completed a few preliminary tests of the DAE inte-
grator, by simulating the response of the IEEE 39 bus system
to a step decrease in load at bus 17. Fig. 3 illustrates these
preliminary results.

Clearly, there are drawbacks to using backward Euler as an
integration method. Backward Euler can, under some cir-
cumstances, suffer from numerical instability. Future work
will investigate alternative integration approaches.

4. CONCLUSIONS AND FUTURE WORK
In this paper we describe the development of a dynamic
power system simulator that has the ability to tune the
underlying direct linear solver, non-linear solver, and the
DAE integrator. Using a general purpose suite of numerical
solvers (Trilinos) allows one to perform experiments involv-
ing the various methods that underly DAE solution. In the
preliminary results described in this paper, we have found
that the KLU linear solver package with AMD ordering and
block triangular form dramatically outperforms UMFPACK,
LAPACK, and SuperLU. We suggest that the reason for this
increased efficiency is that power systems matrices remain
highly sparse, without dense blocks on the diagonal, even
after careful symbolic reordering. Because KLU uses sparse
numerical routines exclusively, it appears to perform better
for the solution of power grid linear systems. Secondly, we

0 5 10 15 20 25

0.915

0.92

0.925

0.93

0.935

Time (seconds)

V
o
lt
a
g
e
m
a
g
n
it
u
d
e
a
t
b
u
s
1
7

0 5 10 15 20 25
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

Time (seconds)

S
p
ee
d
o
f
g
en

er
a
to
r
8

Figure 3: Illustrative DAE integration results for a

small power system through our Trilinos Rythmos

interface. This figure shows the bus voltage at bus

17, and the per unit machine speed at generator 8,

integrated for 25 seconds after a step decrease in the

(purely resistive) load at bus 17.



Table 3: Nonlinear Solve Results

Newton Steepest Descent
Full Step Backtrack Polynomial More-Thuente Full Step Backtrack Polynomial More-Thuente

Line Search 0.0116 0.0133 0.0131 - UC 0.0155 0.0139 -
Trust Region 0.0129 0.0129 0.0126 0.0129 0.0130 0.0131 0.0130 0.0128

Inexact Trust Reg. 0.0140 0.0133 0.0135 0.0136 0.0137 0.0139 0.0134 0.0137

Nonlinear Conjugate Gradient Broyden
Full Step Backtrack Polynomial More-Thuente Full Step Backtrack Polynomial More-Thuente

Line Search UC UC UC - 0.0126 0.0127 0.0145 -
Trust Region 0.0140 0.0135 0.0136 0.0140 - - - -

Inexact Trust Reg. 0.0138 0.0139 0.0139 0.0135 0.0134 0.0136 0.0134 0.0140
All results are in seconds. UC = unconverged.

found that the Line Search nonlinear solver with the New-
ton direction method and the Full Step line-search method
is the fastest non-linear solver for a small power system,
though these results were for a single permutation of a small
case, and therefore not particularly conclusive. Finally, we
interface the power systems simulation problem to a simple
backward Euler integrator and illustrate that the solver is
stable.

Note that all of these tests were completed within a se-
rial computing environment. Therefore, the testing of the
parallel/HPC features available within Trilinos, as well as
additional verification, remains for future work. In addi-
tion, we plan to further study the numerical methods as-
sociated with the non-linear system solution to identify ap-
proaches that are most appropriate for power systems un-
der stress. It is well known that the system Jacobian ma-
trices can become ill-conditioned under high-stress condi-
tions (e.g., voltage collapse), and therefore work is needed to
identify routines that maintain numerical stability for these
highly stressed cases.
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