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Abstract—Because of the complicated combination of 

mechanisms that combine to produce large power system 
failures, the simulation of cascading failure requires some 
modeling assumptions. In this paper we compare three models of 
cascading failure in electrical power systems under various 
assumptions. In the first, we combine dynamic generator models 
with a DC power flow network model, and use time-delayed 
(memory) relays to simulate branch failure. In the second, we 
simulate cascading with the use of sequential power flow 
calculations. In the third, we simulate cascading using a simple 
topological contagion model. The results indicate that the 
dynamical and the quasi-steady state (QSS) simulations show 
substantial agreement, whereas the topological model differs 
significantly. We also find that the extent of the agreement 
between the dynamical and the QSS model largely depends on 
the way in which branch failures occur. 
 

Index Terms—Cascading failure, Linear dynamic model, 
Quasi-steady state model, Transient behavior.  
 

I. INTRODUCTION 
HE electrical power system industry is of vital importance 
to economic, social and national security. It is one of the 

few industries in which the set of affected stakeholders may be 
said to encompass all of modern society. It is however 
exposed to a significant risk of cascading failure that may 
propagate throughout the system [1]. A cascading failure is 
defined by NERC as: “The uncontrolled successive loss of 
Bulk Electric System Facilities triggered by an incident (or 
condition) at any location resulting in the interruption of 
electric service that cannot be restrained from spreading 
beyond a predetermined area.” [2]. The loss of service may 
result in great costs to society, such as those observed due to 
the August 2003 blackout in North America [3]. 

The minimization of cascading risk is therefore a continuing 
area of research in both academic and industrial settings. 
Despite these efforts, salient fundamental questions on the 
nature of cascading failure in power systems remain 
unanswered. These include how to make modeling 
 
Manuscript received November 30, 2011. This work is supported in part by 
the U.S. Department of Energy under award DE-OE0000447.  
R. Fitzmaurice is with the University of Vermont, Burlington, VT 05405. 
(phone: 802-656-0734; e-mail: ronan.fitzmaurice@uvm.edu) 
E. Cotilla-Sanchez is with the University of Vermont, Burlington, VT 05405. 
(e-mail: eduardo.cotilla-sanchez@uvm.edu)  
P. Hines is with the University of Vermont, Burlington, VT 05405. (e-mail: 
paul.hines@uvm.edu) 

assumptions and comparisons between models. In this paper 
we test some frequent modeling assumptions using traditional 
and a novel metrics that compare failure paths.  

The power system cascading failure problem is multi-
dimensional and the robust determination of relevant factors 
has yet to be achieved. These factors include those mentioned 
in Section II of this paper. Due to the nature and operation of 
power systems it is extremely challenging to determine the 
correct assumptions for the simultaneous increase of modeling 
fidelity and decrease of computational complexity.  

The remainder of this paper is organized as follows: In 
Section II we discuss some of the factors that need to be 
considered in power system cascading failure modeling and 
provide a classification of models within the literature. In 
Section III three distinct models are introduced in order to 
determine the impact of some of the modeling assumptions 
described in Section II, which may affect the outcome of 
cascading failure. Comparisons of the cascading failures 
produced by each model are presented in Section IV and a 
discussion is given in Section V.  

II. CLASSIFICATION OF CASCADING FAILURE MODELING 
ASSUMPTIONS  

The modeling of cascading failure in power systems can be 
viewed as a multi-dimensional problem. This is due to the 
nature of the multiple interactions of underlying technological, 
physical and policy restrictions that can affect the operation of 
the system during a cascade. In this section a number of 
possible dimensions are discussed.  

A. Probabilistic vs. Deterministic failures 
Probabilistic models of cascading outages are common in 

the literature [4]-[6], due to the uncertain nature of many of 
the component failures. There are, however, models that 
deterministically fail overloaded components [5], [6]. 
Although we consider only deterministic models in this paper, 
this limitation can be easily circumvented by adding support 
for probabilistic failure to any of the deterministic models. 
This will be described in future work.  

B. Adherence to Kirchhoff’s Laws  
It has been contended that the endogenous failure of 

components to a system perturbation is the result of changes in 
the components loadings. Therefore, models of cascading 
failure in power systems must be based on approximations to 
the physics that govern the load redistribution. Thus as a 
general rule the models must incorporate at least an 
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approximation of Kirchhoff’s Laws as the main method of 
loading redistribution. Despite this requirement some models 
of cascading failure in the literature use topological 
characteristics to describe the failure of components [7], [8]. 
Adapted from [9] one such model is discussed in this paper. 
Whereas some models are based purely on Kirchhoff’s laws 
[4], others use a combination of topological and Kirchhoff’s 
laws for component failure [5], [6]. 

C. Simultaneous vs. Single Line Failures 
During a cascading event multiple lines may become 

overloaded. As it has been addressed in [8], the order in which 
lines are failed can influence the progression of the cascade. In 
particular, it is important to consider whether the model allows 
for simultaneous failure of lines or only one failure at a time. 
In this paper, we test different assumptions regarding the 
sequence in which lines fail.  

D. Steady State vs. Transient Modeling 
A model can be classified on whether, or not, it incorporates 

transient behavior of the power system as transmission lines 
and generators are failed. A model that includes transient 
behavior would include generator dynamics and the possible 
dynamic simulation of load demand [6]. Our experiments in 
Section IV also benchmark this distinction.  

E. Persistent Memory of Previous States 
In many cascading failure models the current state of the 

system is used in order to determine the risk of component 
failure. We propose that the risk of failure of components is 
not only dependent on the current state of the system but also 
on previous operating states. Consider, for example, two 
transmission lines that have the same characteristics and are at 
the same steady state power flow. We can imagine that both 
lines have a temperature at which heating will cause sagging 
and increase the risk of failure. If they previously are at 
different steady state power flows and temperatures they will 
arrive at the new equilibrium temperature at different times 
and therefore will have different associated risk of failure.  

F. Operator Response 
The manner in which operators (or automated control 

schemes) respond to a cascading failure event is also a salient 
influence in the progress of the event. Remedial action 
schemes can affect the size of the resulting blackout positively 
or negatively. For example, the European blackout of 2006 
was largely the result of human error [9]. The human part of 
the system is probably the most difficult to model, due to the 
vast uncertainty involved in modeling the behavior of human 
agents. In this paper we model one type of human/automated 
reaction to cascading failure events by adjusting whether or 
not generators are dispatched after line tripping or islanding. 

G. DC vs. AC transmission system 
Cascading models may also be classified based on whether 

they compute the power flows in the transmission system 
using a full AC analysis or using the DC load flow 
assumptions. The use of DC load flow assumptions is 
common practice in the literature due to the speed up that can 
be achieved and thus allowing a larger number of cascading 
failures to be examined [4], [5]. AC models do exist [6]; 

however, to the best of the authors’ knowledge, the 
translational advantage of increased accuracy of power flows 
into the probability distributions of cascading failures at 
various operating points has not yet been tested. Another 
important feature of AC modeling is the inclusion of voltage 
stability and reactive power limits in the model. These 
mechanisms play a significant role in large cascading failures 
[10]. The consideration of voltage stability, however, requires 
new mechanisms of load modeling that are beyond the scope 
of this work. 

III. CASCADING FAILURE MODELS 
In this paper we compare three distinct models of cascading 

failure. The first two are based on the DC power flow 
assumptions while the third is based on a topological model. 
This section describes the properties of these three models.   

A. Linear Dynamic Model 
The Linear Dynamic (LD) model reproduces the cascading 

failure mechanisms by combining generator dynamics with the 
DC power flow assumptions for network flows. The 
mathematical formulation of the model is based upon a system 
of Differential Algebraic Equations (DAE) [11]. While the 
assumptions of this model are restrictive, the computational 
speed at which it runs allows for a large number of cascading 
failures to be analyzed while still increasing modeling fidelity 
over other cascading failure models that use solely a DC 
power flow ([4], [5]).  

The dynamical aspect of the LD model consists of 
generators that are controlled through second order governor 
models. These governors introduce transient behavior in the 
system as lines are switched off and generator or loads 
become disconnected. While not considered in this work, the 
set of state variables currently implemented for the generators 
may be used to produce frequency dependent failures of the 
generators, thus leading to cascading failures more inline with 
their real world limitations. This effect could easily be 
replicated in other simplified cascading power system models 
while still producing relatively short running times (when 
compared to slower AC models such as the Manchester 
model).  

The set of algebraic equations is composed by the usual 
power injection and angle equations under the DC power flow 
assumptions: 

P = B!      (1) 
where P is the set of power injections or withdrawals from the 
system, !  are the angles at each bus and B is the system’s 
Kirchhoff’s matrix [12]. 

The differential equation associated with each generator is 
the classic swing equation [13]: 

M !!! = PE !Pm !D !!    (2) 

where !  is the vector of rotor angles of the generators, M is 
the inertia of the machine and D is the damping constant. PE 
and Pm are the electric power exported from the generator and 
the mechanical power of the generator respectively.  

The LD model also incorporates a simple second order 



 3 

governor model so that it may be able to respond to changes in 
loading due to generator or loads being tripped out of the 
system. 

Another set of memory variables is associated with the 
power transmission lines. These variables give the associated 
memory value to each line, which is integrated over the entire 
cascade time span and increases or decreases depending on its 
current state and the flows in the line. Each variable correlates 
to the temperature of the components in the transmission line, 
however it does not necessarily represent only the temperature 
of the line. It may also be considered to incorporate other 
effects associated with failure risk that are compounded during 
the operation of the component such as wear and tear and 
sagging. The differential equation for the memory variable is 
given as: 

!Ti = Fi
2 ! kiTi      (3) 

where Ti is the memory variable for line i, Fi is the flow on the 
line and ki is a time constant associate with the line. 

For each line there is a cut-off value for the memory 
variable, Ti

C, which is associated with its equilibrium value if 
the line was loaded at rate A for an infinite amount of time. 
The constant k is set so that starting from a reference value, 
which is taken as zero, the variable will reach the cut off, Ti

C, 
after ten minutes if the line is loaded at its rate B flow. This 
cut-off mechanism is deterministic and due to the nature of 
equation (2) no line can be tripped if the flow in the line is not 
at some point in time above its rate A value. The initial 
memory values, Ti

0, are obtained by assuming that the system 
was at an equilibrium state.  

The LD model also includes a stopping criterion when no 
lines have failed in the previous 30 minutes. We assume that 
this would be long enough for the operator to respond to a set 
of failures. 

B. Quasi-Steady State Model 
The Quasi-Steady State (QSS) model was created as a 

complement to the LD model in order to investigate 
assumptions of models that rely solely on the steady state 
operation of the system. There are no dynamics in the model 
other than the switching of lines due to overloads.  

This model is also based on DC power flow assumptions 
and it is dispatched using an optimal power flow. Initially, the 
model tries to find a solution where no load shedding occurs 
and all lines remain at their rate A values. However, if no 
solution is found, the system will be dispatched so that the rate 
A but not the rate B limits of the lines can be reached.   

Lines are tripped deterministically when they are above 
their rate B values. The main distinction between the LD and 
QSS models is the manner in which the lines are failed. In the 
LD model the memory variable takes into account the entire 
history of the line loadings during the cascade while the QSS 
does not. For the QSS model only the current state of the 
system is relevant for the cascade.  

C. Topological Contagion Model 
A number of cascading failure research articles are based on 

experiments on topological models of the power grid [14]. The 

cascading mechanisms of many of those models resemble the 
“domino” effect, where a given component of the network will 
fail if topologically connected components have failed as well. 
In the field of complex networks, these are also denominated 
“contagion models”. In this paper, we describe results from a 
topological contagion model (TC) which is very similar to the 
one proposed in [15]. Each node represents a transmission line 
and these nodes can be active nodes (failed) or inactive nodes 
(healthy). Note that this representation is dual to the classic 
convention of node/bus and link/transmission line.  

The following algorithm describes the discrete dynamics that 
govern our topological contagion model:  

1.  Assign contagion thresholds to each transmission 
line. These values are drawn from a random 
distribution f !( )  such that f is a probability 
density function. A transmission line, i, will switch 
from inactive to active status when the proportion 
of neighboring transmission lines that are active is 
greater than ! . 

2.  At the start of the simulation, activate the 
transmission lines that belong to a contingency set, 
and initialize the rest of transmission lines to 
inactive status.  

3.  At each time step, randomly and asynchronously 
update the status of each transmission line 
according to the comparison between its own 
contagion threshold ! i( ) and the current number 
of active neighbors. 
  

4.  Repeat Step 3 until we reach the end of the 
simulation. 

IV. EXPERIMENTS AND RESULTS 
 The three cascading models were simulated on the IEEE 

39-bus test system. The goal was to compare the differences in 
cascading failures resulting from the same exogenous events. 
The system was initially dispatched to be N-1 secure and then 
subjected to N-2 and N-3 contingencies. The active power 
flow line limits were chosen according to the following 
formula: 

rateA = cBij      (4) 

where Bij is the susceptance of the line and the constant c 
represents where the limit thresholds are so that at the optimal 
dispatch, no N-1 contingencies are present in the QSS model. 
Its value in this case was 0.2127775. The rate B limit of the 
line was chosen to be 1.1 times the value of rate A for all 
lines. Unless otherwise stated the constant k from Eq. 3 was 
set at 0.0029. This value gives a time to failure of ten minutes 
(when a line is operating at its rate B value) from a cold start. 
That is, from a starting point of zero for all values of T, the 
line reaches its equilibrium rate A, Tc, in ten minutes.  

For each simulation, we recorded the initial and final state 
of the system, as well as the timing in which faults occurred. 
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For simplicity, within these experiments we define a cascade 
as a continuation of failures after the initial set of exogenous 
events. 

The resulting cascades were compared using three metrics: 
 

1. Cascade size, measured in number of line failures. 
 

2.  Blackout size in percentage of unserved load. 

3.  The relative agreement between cascade paths.  

The experiment metrics were designed in order to adhere to 
the desire of a system operator to identify the size of a 
potential cascading failure. This is estimated with the 
combination of the first two metrics and the path of failure 
given by the third metric.  

The relative agreement of cascade paths, R m1,m2( ) , is 

defined as follows. If models m1 and m2 are both subjected to 

the same set of exogenous contingencies: c = c1,c2,c3,.....{ }
. R m1,m2( )  measures the average agreement in the set of 

dependent events that result from each contingency in each 
model. If contingency ci results in the set of Ai dependent 
branch failures in model m1 and the set of Bi dependent branch 
failures in m2, R m1,m2( ) is defined as,  

R m1,m2( ) = 1
C

Ai ! Bi
Ai " Bii=1

C

!        (5) 

We also measure the distribution of R m1,m2( )  for cases 

where the set of contingencies is defined as individual 
elements of the set of C.  

For the N-2 contingency scenario, all possible sets that 
could occur were run for both the LD and the QSS model. It 
was observed that in not a single case did the exogenous 
events cause a continuation of failures of other components in 
the LD model when no such events occurred in the QSS 
model. This outcome suggests that for the transmission 
failures being modeled here, the transient behavior introduced 
by the generators did not influence the modes of cascades of 
the system. Therefore, the steady-state line flows are the most 
predictive factor of cascading failures modes in these two 
models.  

For N-3 contingencies only the scenarios that produce a 
cascade in the QSS model were investigated within the LD 
and TC models. 

Fig. 1.  CCDFs for the three metrics for each model. Top panel is the 
percentage load lost in the LD and QSS models.  The second panel is number 
of endogenous line outages in the cascade for the three models. The last panel 
is for the relative agreement between paths for the three models.  

 
Fig. 2.  Normalized memory of three overloaded lines where the cascade 
stopped due to Condition 2.  
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A. Comparison of the LD, QSS and TC models 
In the first experiment the models were run on the 

benchmark system described above. The complementary 
cumulative distribution functions (CCDF) for the various 
metrics are shown in Fig. 1. In the top panel we compare the 
QSS and LD models regarding the amount of load unserved 
after the completion of the cascade. The panel shows that the 
LD model gives a higher probability of less load being shed 
that the QSS model. Similarly, in the second panel of Fig. 1, 
the probability of a certain number of line failures in the LD 
model were lower than in the QSS model for the majority of 
sizes.  

The reason for the discrepancy between the models is based 
on two assumptions within the LD model that are not present 
in the QSS model: 

1. Time constraints on the continuation of the cascade 
in the LD model. 

2. The constraint that only one line may fail at a given 
time.  

In terms of the first constraint it is observed that 
approximately 62% of the cascades stop at some point during 
the cascade whereas they would have continued should they 
be given more time. Of these cascades, 56% were simply a 
single additional endogenous event in the QSS model with the 
LD model not initiating any dependent cascading failures. The 
remaining 6% of the cascades stop at some point (in the LD 
model) after an initial sequence of endogenous events.  

For the cascades that did not stop due to Condition 1, it was 
observed that for 29% of the total number of cascades there 
was agreement between the QSS model and the LD model. 
For the remaining 9% the LD model produced shorter 
cascades in terms of endogenous line failures. It was also 
observed that in all cases where these differences occur, 
multiple line overloads were present and therefore there were 
multiple possible paths of cascading failure. The converse 
however is not true since some cascades with multiple 
possible paths were shown to have a final end state, which was 
the same in both models.  

We conjecture that the temporal nature of failure in the LD 
model was the result of this discrepancy. That is, the failure of 
one line at a time may have reduced the flows in other stressed 
lines bringing the system back into a normal operating 
condition. This in turn caused the cascade to stop. These 
cascades show that it is important to assume the temporal 
failure order in cascading failure models. An example is 
shown in Fig. 2 with an scenario where three lines were 
overloaded after the initial N-3 contingency. Upon the first 
line reaching its temperature limit and failing, it caused a 
redistribution of flows that reduced the flows in the other 
overloaded lines and a subsequent reduction in the 
temperature of those lines.  

In the case of the TC model the distribution of line failures 
was similar to the other two models. However, as shown in the 
third panel of Fig. 1, the relative agreement of paths between 
the TC and the other two models was much lower than 
between the QSS and the LD model. This result is expected as 
the both the QSS and LD model failures are based on 

Kirchhoff’s laws while the TC is simply a topological nearest 
neighbor model. Since the redistribution due to Kirchhoff’s 
Laws affect potentially almost all other elements in the 
system, the resulting cascades should look very different to the 
TC model failures.  

 

B. Assumptions regarding the order in which lines fail 
Since we observed in the previous section that the temporal 

nature of line switching could affect the resulting cascade it 
would seem prudent to investigate the role of line switching 
order for a system with multiple overload on cascading 
failures. Here, the condition of failing all overloading lines in 
the QSS model was relaxed and several failure sequences were 
used to compare with the original QSS model and the LD 
model.  

Our criteria to choose sequences is similar to those in [16]: 
1. The line with the largest flow as a percentage of its 

Rate A value was failed first. 

 
Fig. 3. CCDF of load unserved for resdispatching the system after a single 
failure event and only after islanding for the LD model.  
  

 
Fig. 4.  CCDF of load unserved for resdispatching the system after a single 
failure event and only after islanding for the QSS model.  
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2. The line with the highest absolute flow in terms of 
MWs was failed first. 

3. The line with the lowest flow as a percentage of its 
Rate A value was failed first.  

4. The line with the lowest absolute flow in terms of 
MW's was failed first. 

It was found again that there was a general agreement 
between the distinct QSS models, with the conditions 
described above. The mean agreement variable, R m1,m2( ) , 
between cascades for each rule governing the failure sequence, 
1 to 4, and the original QSS model were approximately 0.98, 
0.97, 0.98 and 0.95 respectively. As expected, the divergent 
paths between the sequences assumptions were found in cases 
where multiple line overloads occurred in the original QSS 
model. It is however again noted that multiple line overloads 
does not necessarily lead to such a divergence.  

In comparison to the LD model, the sequences showed a 
low agreement, mostly due to the fact that the LD has a time 
constraint placed on whether a subsequent line failures is 
allowed or not. If we take out the time-related stopping 
cascades from the set we observe that there is a much higher 
agreement between the models. The path agreement variables 
are 0.9149, 0.8661, 0.9086 and 0.9843 for failure assumptions 
1 to 4 respectively. This suggests that while the LD replicates 
none of the rules stated above, the use of any of them will 
increase agreement for Condition 2 cascades. 

C. Assumptions on generation dispatch 
In the original set of models the system was redispatched 

after each line contingency. In normal operation this would 
not be the case therefore a representation of the actions of the 
operator need to be included. The models simulated so far 
feature an ideal optimal redispatch after a line contingency. To 
investigate how the operating actions may change the 
conditions of cascading failure the assumption that the 
generators were redispatched immediately was relaxed. After 
a line contingency the generation and load demand were fixed 

to their previous values until an islanding event occurred and 
the system was then dispatched again to optimally serve the 
load. We found that for the N-2 contingencies that had no 
redispatch there was an increase the number of cascading 
failures in the QSS by threefold.  

The CCDF of the percentage of load lost depending on the 
methods of dispatch is given in Fig. 3-4 for the LD and QSS 
models respectively. These figures illustrate that there is not 
only a larger set of N-2 events that can create a cascading 
failure but also that the probability of larger events in terms of 
MW lost is greater for the new dispatch assumption if a 
cascade does occur.  

D. Non-linearity of the models and failure assumptions 
In order to investigate the possible interactions of model 

complexity and the modeling assumptions, the LD model was 
modified so that the failure of a line was determined in a 
similar manner to the QSS model.  

The LD model has more fidelity than the QSS model to the 
operation of power systems, after each component failure. We 
are, therefore, able to test if increase in fidelity of the model 
necessarily results in more accurate cascading failure 
dynamics. The increase of the model fidelity, with the steady-
state assumptions of cascading failure, cause the model to 
produce results that are not aligned to any of the models 
described above. The results for the LD model with this 
assumption are large cascades with concurrently large 
amounts of load shed. The agreement function between this 
instance of the LD model, the original LD model and the QSS 
model are almost zero. The above results show an important 
lesson in the formation of cascading failure models. In 
particular, an increase in the model fidelity that aims to bring 

 
Fig. 5.  CCDF of load unserved for the LD model with the QSS assumption of 
failure.  
  

Fig. 6.  CCDF of blackout sizes of the LD model with differing constants k. 
Two values are plotted against the QSS model.  
  

  
0.0029 0.3536 
0.0058 0.4271 
0.0146 0.4402 
0.0292 0.5949 

 
 

Table 1. The relative agreement of the LD and QSS models for increasing 
values of k. 
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the model more inline with power system operation should 
also cause a reevaluation of the conditions on which lines are 
supposed to trip. 

The reason for the large discrepancy is the generator and 
other dynamics of the system as a line fails the generators 
angles and the bus angles change and oscillate. This causes the 
power flow through a line to temporally swing above its rated 
value thus the line trips out. In the QSS model this dynamic 
behavior is not observed and therefore the QSS model gives 
shorter and more reasonable results. The CCDFs of the 
blackout sizes for the LD model with the QSS assumption 
failure are given in Fig. 5. These are shown in comparison to 
the QSS model for the same contingencies.  

E. Change of memory model parameters 
The value of the constant k was increased in order to 

observe the effect of increasing how fast the memory variable 
(T) responds to changes in line power flows would affect the 
characteristics of the cascades. We conjectured that increasing 
the k value would increase the similarities between the QSS 
and the LD models, as more cascades that were stopped due to 
Condition 1, described above, would continue in the allotted 
time. For an increase in the k of 100% from its original value 
this was also observed to occur. The results show greater 
agreement with the QSS model while there was no difference 
in the paths between these LD models where the termination 
was the result of Condition 2 in both for the lower value of k.  
Similar results were observed after changing the time constant 
to 500% and 1000% of its original value. Fig. 6 shows the 
CCDF of two values of k. Here it is seen that the higher value 
is in more agreement with the QSS model. Table 1 gives a list 
of the relative agreement between the models as k increases. 
These results seem to suggest a convergence of the models as 
k is increased.  

V. DISCUSSION 
In this paper three models of cascading failures in power 

systems were examined and comparisons were made of 
various assumptions that can be introduced into these models.  
 The results show that the two Kirchhoff models (LD and 
QSS) generally agree. When they differed it was largely the 
result of differences in the speed in which the transmission 
lines tripped. The results show that the model results converge 
as the time constant of the LD model was decreased. We also 
observed that the agreement between cascades that terminated 
naturally in the LD model did not change with the time 
constants. This suggests that changing the time constants is 
akin to speeding up the LD model. Therefore if the LD model 
was run for long periods of time, good agreement would be 
achieved with the QSS model. Discrepancies still exist 
between the two models; this is, when there are cases of 
multiple line overloads however this could be compensated by 
the introduction of rules for the order of failing overloaded 
lines. It is therefore suggested that the main assumption that 
guides the evolution of both models is Kirchhoff’s laws. In the 
case of the TC model bad agreement was observed and there 
seems to be no modeling assumptions that could be adapted or 
relaxed in this model to achieve an agreement.  

 We observed that the inclusion of Kirchhoff’s laws is not a 
sufficient condition for agreement of the models, as 
demonstrated in the case of the LD model with the QSS model 
assumption on line failure. Where the line was tripped after its 
power flow was greater than a cut-off value. In this case the 
transient dynamics of the LD model determined the evolution 
of the system more than the steady state redistribution of flows 
after contingencies.  
 Finally, we found that the actions of the operator can lead to 
substantial changes in the distribution of cascading events. 
However, these changes were qualitatively similar amongst 
the results provided by the models based on Kirchhoff’s laws.  
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