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Predicting Critical Transitions from Time Series
Synchrophasor Data

Eduardo Cotilla-Sanchez, Graduate Student Member, IEEE, Paul Hines, Member, IEEE, Christopher M. Danforth

Abstract—The dynamical behavior of power systems under
stress frequently deviates from the predictions of deterministic
models. Model-free methods for detecting signs of excessive
stress before instability occurs would therefore be valuable. The
mathematical frameworks of “fast-slow systems” and “critical
slowing down” can describe the statistical behavior of dynamical
systems that are subjected to random perturbations as they
approach points of instability. This paper builds from existing
literature on fast-slow systems to provide evidence that time series
data alone can be useful to estimate the temporal distance of a
power system to a critical transition, such as voltage collapse.
Our method is based on identifying evidence of critical slowing
down in a single stream of synchronized phasor measurements.
Results from a single machine, stochastic infinite bus model, a
three machine/nine bus system and the Western North American
disturbance of 10 August 1996 illustrate the utility of the
proposed method.

Index Terms—Power system monitoring, criticality, synchro-
nized phasor measurements.

I. INTRODUCTION

INCREASING evidence suggests that electric power sys-
tems frequently operate near critical points at which a

small disturbance could trigger instability. The disturbances
of, for example, 14 Aug. 2003 and 8 Sept. 2011 in North
America [1], [2], 4 Nov. 2006 in Europe [3] and 10 Nov.
2009 in South America [4] accentuate the continuing need for
new technology that can warn operators when a power system
approaches critical operating points.
Many changes in which a power system moves from a sta-

ble, secure operating state to one that could result in degraded
network performance can be studied using the framework of
critical transitions. Voltage collapse, for example, can be de-
scribed as a saddle-node bifurcation [5]. Small-signal instabil-
ity typically results in critically- or under-damped oscillations,
which can be understood using the theory of Hopf bifurcations
[6]. There is a long history of using eigenvalue analysis to
evaluate these types of critical transitions. Extensive research
shows that the eigenvalues of the linearized system equations
can be used to predict proximity to voltage collapse and small-
signal instability [7]–[12]. Recent research [13] shows that
linearization can be avoided by using the nonlinear Koopman
operator to estimate the proximity of a system to critical
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points. However, accurately estimating eigenvalue (or mode)
trajectories in a large system requires accurate models and
large quantities of sensor data.
The parameters in most power system models naturally

include some error, particularly in the ways that bordering
balancing areas affect the area being modeled. Furthermore,
random fluctuations, such as from noisy loads or variable
sources like wind and solar, can affect system dynamics in
ways that are not captured by standard eigenvalue analysis
methods. Methods that can identify emerging risks without
detailed network models may be helpful in such cases. With
the deployment of synchronized phasor measurement units
(PMUs or synchrophasors) operators have increasing access
to large quantities of high-resolution, time-synchronized data.
Methods that can turn these data into information about
operating risk, without relying on network models, could
dramatically increase the value of synchrophasor technology,
and help operators to make better decisions about when or if
to implement risk mitigating operating procedures.
A number of methods for estimating blackout risk from

phase-angle data exist in the power systems literature. Recent
advances in the use of PMU data are described in [14]–
[16]. Reference [17] describes a method for measuring phase
differences between groups of generators from time series
data. Relatedly, reference [18] describes a method for es-
timating voltage differences between areas based on PMU
measurements and circuit theory. In [19], the authors illustrate
how to calculate stability margins utilizing a “ball-on-concave-
surface” dynamic equivalent. Other methods that extract fre-
quency information from PMU data are described in [20]–
[24]. Some of these approaches proved useful for tracking the
progression of slow oscillations [21] and the assessment of
post-fault stability [24].
This paper takes a somewhat different approach by building

on recent research in the area of nonlinear stochastic dy-
namical systems, which shows that large, complex systems
frequently show evidence of “critical slowing down” (CSD)
before they reach points of critical transition [25]. We leverage
the methods described in [25], [26] to obtain metrics that use
a single time series of PMU data and appear to provide a
strong indication of proximity to system failure. Results from
a single machine stochastic infinite bus power system model,
a three machine, nine bus power system model, and data from
the August 10, 1996 blackout in the Western North American
interconnection indicate that there is substantial information
regarding system health in even a single stream of PMU data.
The remainder of this paper is organized as follows. Section

II provides a summary of the mathematical framework of fast-
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slow critical transitions that underly the methods proposed in
this paper. Section III describes our adaption of these concepts
to the task of measuring critical slowing down in a power
system. Section IV discusses the results obtained from three
test systems. Lastly, Section V discusses the implications of
this work.

II. CRITICAL TRANSITIONS AND FAST-SLOW SYSTEMS

Numerous recent articles suggest that the properties of data
from stochastic dynamical systems can be used to signal the
proximity of a system to a tipping point, catastrophic shift, or
critical transition. This section discuses how these results may
be useful for predicting critical transitions in power systems.
A dynamical system described by differential equations

experiences a bifurcation when a change in its parameters
provoke a qualitative change in the motion of the system.
Some bifurcations are benign, such as the transition from a
state with over-damped oscillations (complex eigenvalues in
the left-half plane) to a state with over-damped exponential
recovery. In this case the stability of the system is not
compromised. However, other bifurcations result in instability.
Critical bifurcations (or critical transitions) of this sort result
in a shift from a stable regime to an unstable one. Systems
that undergo a critical transition will settle (if at all) at a point
that is far from the original equilibrium operating state. This
paper focuses on identifying proximity of a power system to
critical transition.
Physical systems are constantly subject to stochastic forc-

ings that perturb the system state from its attractor. While
random perturbations can excite instabilities in a system,
they can also produce statistical patterns that provide early-
warning signs of proximity to critical transition. Several recent
articles show that statistical patterns emerge in time series
data from a variety of complex systems before they reach a
critical transition (see the review in [25]). Examples in which
such early warning signs appear include ecosystem models
before extinction [27], climate models before abrupt climate
change [26], the human body before an epileptic seizure [28],
and financial markets before a collapse [29]. These examples
suggest a type of universality in the dynamics of stochastic
complex systems. In each case, time-domain measurements
taken from the system before the transition show the following
statistical patterns
1) Increased recovery times from perturbations
2) Increased signal variance from the mean trajectory
3) Increased flicker and asymmetry (increased kurtosis) in
the signal

Together, these properties are commonly referred to as “critical
slowing down” (CSD), a phenomenon originally observed in
models of emergent magnetic fields in ferro-magnetic materi-
als [30]. As described in [25], these three properties can be
identified by statistical tests for increasing variance and au-
tocorrelation (or autoregression) in time series measurements
taken from the system.

A. Fast-slow systems
The mathematical framework of fast-slow systems provides

some explanation for why variance and autocorrelation in-

crease in stochastic differential systems before critical tran-
sitions occur. A fast-slow system is one that can be described
by two sets of ordinary differential equations (ODE): one that
moves slowly toward a critical point, and the other that has
shorter time constants [31]. Equation (1) is the general form
for a system with a fast variable (or vector) u, and a slow one
v:

{

u̇ = f(u, v)

v̇ = εg(u, v)
(1)

In (1) ε is a small parameter (0 < ε ! 1) that makes v vary
slowly relative to the shorter time variation in u. In a power
system ε might represent, for instance, the rate at which a
load gradually increases toward voltage collapse. Interactions
between the dynamics of the fast subsystem (u) and the slowly
varying variables (v) can precipitate a critical transition away
from a stable operating point.
Many critical bifurcations can be classified as either fold,

Hopf, Pitchfork, or transcritical. Fold (or saddle node) and
Hopf bifurcations are particularly relevant to power systems
because they can be used to describe common instabilities such
as voltage collapse and the onset of oscillatory behavior. In the
following paragraphs we review common, simplified examples
(known as the “normal forms,” adapted from [31], [32]) that
illustrate the properties of fold and Hopf bifurcations.
A system with a fold bifurcation has two stable operating

points, which gradually approach one another as the slow
variable (v) increases. When the two operating points collide,
the two equilibrium conditions are eliminated, resulting in an
unstable system. Voltage collapse is a familiar example of a
fold bifurcation. Equation (2) illustrates a simple two-variable
fast-slow fold bifurcation, with a critical transition when the
slow variable v reaches zero.

{

u̇ = −v − u2

v̇ = εg(u, v)
(2)

An example of a simple power system that exhibits a fold
bifurcation is the single machine infinite bus (SMIB) [33].
In the baseline SMIB model that we use in this paper the
generator is located at Bus 1, with terminal voltage V1 =
|V1| eiθ1 . The generator is a lossless round rotor, and produces
Pe(t) electric power as a result of Pm(t) mechanical forcing.
The generator has a constant field voltage magnitude (Ea)
behind a synchronous reactance (Xd). The rotor dynamics are
governed by the classic swing equation [34] with Pe(t) subject
to the network equations for this specific circuit:

Pm(t) = Pe(t) +Dδ̇(t) +M δ̈(t) (3)

Pe(t) =
EaV2(t)

Xd +X12
sin(δ(t)) (4)

where δ(t) is the machine rotor angle, relative to the phase
angle of the infinite bus (θ2 = 0), D and M are machine
damping and inertia constants and X12 is the reactance of
the transmission line between the two buses. From (4) it is
clear that the SMIB model becomes unstable when Pm reaches
|Eq|V2(t)
Xd+X12

= Pmax. When Pm < Pmax there are two equilib-
rium solutions for δ that satisfy (4). With Pm ≥ Pmax the
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system Jacobian becomes singular, and the system unstable.
For a detailed discussion of this model see [33]. Sec. IV-A
discusses an extension of the SMIB model to a stochastic case.
In a Hopf bifurcation, a system with exponential recovery

rates transitions to one in which oscillations are critically- or
under-damped; i.e. a pair of real-valued and negative eigenval-
ues become a complex conjugate pair with non-negative real
parts. Eqs. (5), from [35], describe such a system:











u̇1 = vu1 − u2 + λ1u1(u2
1 + u2

2)

u̇2 = u1 + vu2 + λ1u2(u2
1 + u2

2)

v̇ = εg(u, v)

(5)

where λ1 is the first Lyapunov coefficient. Refs. [36], [37]
discuss ways in which Hopf bifurcations appear in the SMIB
model, after adding an exciter, for various combinations of D
and Pm.
In summary, there is extensive literature showing that many

types of power system instability can be understood using
(2) and (5). Numerous bifurcation analyses in the power
system literature expand on the two examples described above
and study transitions (including Pitchfork and transcritical
bifurcations) that result from the introduction of more detailed
component models, such as generator exciters and limiters
(e.g., [5], [8], [33], [36]–[38]). Many of these analyses are
reviewed in the IEEE/PES committee report [39].

B. Stochastic fast-slow systems

The above examples show critical transitions as they move
smoothly past the critical point (at v = 0). Real systems,
however, are subject to random external fluctuations that can
substantially change the dynamical properties of the critical
transitions [40]. The theory of fast-slow stochastic differential
equations (fast-slow SDEs) can provide formal insight into
the behavior of stochastic systems as they approach critical
transition. SDEs are challenging because with the introduc-
tion of noise, not only do systems inherit the deterministic
bifurcations from the original ODEs, but they also show
“noise-induced transitions,” which were not present in the
deterministic system. If the magnitude of the noise is small
relative to the variance of the process, the stochastic transitions
occur in the neighborhood of the corresponding deterministic
transitions [31]. When the noise is larger, transitions can occur
at many locations.
The following example, similar to those derived in [31],

[32], illustrates how a relatively simple fast-slow SDE show
signs of critical slowing down when approaching a tipping
point. Let us consider the stochastic extension of (2) with one
fast variable (u ∈ R1) and one slow variable (v ∈ R1) with a
bifurcation at v = 0:

{

du =
(

−v − u2
)

dt+ σdWt

dv = εdt
(6)

where σ > 0 is a constant and Wt is a Wiener process.
Reference [31] shows that solving (6) for the probability
density function (pdf) of u, for a given v, is:
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Figure 1. Probability density functions for the random variable u in (6) and
(7), for different values of v as it increases toward the critical transition at
v = 0. As v increases toward the critical point, the variance in u increases.

Figure 2. An illustration of increasing autocorrelation and variance in
generator bus voltages |V1| (after subtracting the mean) in a stochastic SMIB
model. The left panel compares voltage changes, with a one second time
delay, in an unstressed regime. The right panel shows time-delayed voltage
deviations shortly before the critical transition (see Sec. IV-A).
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(7)

where C is a normalization constant that depends on the
boundary points chosen to solve the Fokker-Planck equation
resulting from (6) and evaluated around the singular limit
ε → 0. Plotting this pdf (Fig. 1), we see that as v approaches
the bifurcation at v = 0 the variance in the random signal u
increases. Ref. [32] demonstrates that for a given realization
of this process (ξ) with additive noise, the variance scales as:

Var(ξ) = σ2[Ov(
1√
v
) +O(ε)] +O(σ4) (8)

Therefore, holding all other things constant, the signal variance
will increase with v−1/2 near the critical transition. Using
simulations, Refs. [31], [32] also show that autocorrelation in u
increases as the system approaches the critical transition. Fig.
2 illustrates this increase in autocorrelation for a stochastically
forced version of the SMIB model (see Sec. IV-A). Because
this same pair of trends is apparent in many large complex sys-
tems [25] we conjecture that increasing signal autocorrelation
and variance will provide early warning of critical transitions
in a variety of power system models.
In large power systems the stochastic differential-algebraic

equations (SDAEs) are sufficiently large and uncertain to
make analytical solutions, such as (7), impractical. Ref. [41]
shows that under some conditions one can linearize the system
equations and use Itô calculus to solve the stochastic ODEs
to obtain estimates of proximity to critical bifurcations. How-
ever, this approach remains computationally expensive, and
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relies on network models that are not perfectly accurate. The
results from stochastic fast-slow systems indicate that there
is significant information about proximity to critical transition
in raw time series data, which can be extracted with minimal
computational effort and is insensitive to modeling errors.

III. METHODS: MEASURING CRITICAL SLOWING DOWN

Given that critical slowing down (CSD), as evidenced by an
increase in signal variance and autocorrelation, can provide an
early warning for critical transitions, we need good methods
to detect statistically significant increases in these measures.
This section describes a procedure for detecting statistically
significant CSD in a signal. Our method is an adapted version
of the procedure in [26], which was used to measure proximity
to transition in global climate models. The following steps
summarize the proposed procedure for identifying CSD in any
time domain signal x(t). In our examples we replace x(t)
with streams of voltage magnitude |V (t)|, phase angle θ(t) or
frequency ω(t) measurements.
1) Choose a window size (T ) within which to test for
autocorrelation and variance. This window should be
large enough to minimize the impact of spurious changes
in the signal and to include multiple periods from signal
frequencies that might be indicators of stress (common
oscillatory modes, for example), yet small enough such
that changes in the signal do not become excessively
averaged. In this paper we use a 2-minute window
size. In the appendix we show that the quality of our
proximity indicator is quite robust to changes in T .

2) Detrend the signal. Filter the data in each window to
remove slow trends that are not the result of CSD. This
detrending should, for example, remove slow changes
in phase angles due to gradual changes in system load.
Following the method in [26] we use a low-pass filter
based on a Gaussian Kernel Smoothing (GKS) function
to capture the dc and low-frequency portions of x within
the window, and then subtract the filtered signal from the
original (10). The smoothing comes from convolving
the sampled signal x[k] with a discretized Gaussian
function:

h(n,σf ) =
1√
2πσf

e
− n2

2σ2
f (9)

where σf determines the bandwidth of the filter and n is
an index for the number of samples from the origin. σf

should be chosen to ensure that only the dc component
and very gradual trends remain in the filtered signal
GKS(x). The final detrended signal d(x) = d[k] is the
difference between the original and the filtered signal:

d(x) = x[k]− GKS(x[k]) (10)

For the results in this paper we use σf = 5 or σf =
10. In the appendix we show that the results are not
highly sensitive to the choice of σf . Experimental results
indicate that the GKS detrending technique is effective
in removing gradual trends in the data. However, it is
important to note that are likely to be many detrending

methods that are similarly effective for this step in the
algorithm (see, e.g., [42]).

3) Measure for autocorrelation. In this paper we assume
that x(t) has been sampled at 30 Hz (as is common
for processed PMU data), which means that consecutive
samples d[k] and d[k − 1] are separated by 1

30 sec. As
in [26], we fit an auto-regressive (AR) model of order 1
(11) to the detrended, discretized signal d[k]:

d[k] = a1d[k − 1] + e[k] (11)

The AR coefficient a1, is found by minimizing the
error term e[k], using the ordinary least squares method.
Because x[k] is detrended, and thus zero mean, the AR
model does not require an intercept. When the signal is
purely random e[k] is large, and a1 is relatively small. As
a system becomes progressively stressed, a1 increases
indicating increased recovery rates from stochastic dis-
turbances. While higher order AR models can be used
to gain additional information about the signal, we find
that the first-order model provides good predictions of
proximity to transition. The appendix includes some
results for higher order models.

4) Measure the variance (σ2) of the discrete detrended
signal d[k] using the same rolling window obtained in
step 1. If there are nk samples within the time window
T , the variance is:

σ2 =
1

nk

nk
∑

k=1

d[k]2 (12)

As described in Sec. II-B, σ2 tends to increase when
systems approach critical transition. Thus, σ2 is our
second metric of proximity to critical transition.

5) Test for statistical significance. We test for statistically
significant increases in a1 and σ2 using the nonpara-
metric Kendall’s τ coefficient [43]. Kendall’s τ tests
for serial dependence (i.e., a statistically significant
increase) in a signal, against the null hypothesis that
the signal is random. In our results we report τa1

and
τσ2 for each one-minute interval before the transition.

In order to corroborate the findings from Kendall’s τ , we also
measure the power spectral density (PSD) of d[k] using a
Welch spectral estimator [44], which will show an increase
in low-frequency components if the system is slowing down.
The PSD of a signal can be found from the coefficients of
higher order AR models and is thus related to the calculation
of a1.
Based on prior research [25], [26], [45], we consider a

system to be critically slowing if the variance and autocor-
relation are significantly higher than “normal” values, and if
Kendall’s τ for each show a statistically significant upward
trend. Practical implementation of this algorithm for power
system operations would require that these two measures be
observed under normal conditions for a period of time.

IV. RESULTS
This section discusses results from applying the method

described in Sec. III to three test cases: a single-machine,
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stochastic infinite bus model (SMSIB), a three-machine nine-
bus power system model (9 bus) [46] and data from the
August 10, 1996 blackout in the Western North American
Interconnection (WECC).

A. Single-Machine Stochastic-Infinite-Bus model (SMSIB)
In our initial analysis, we modified the classic single

machine infinite bus model (Eqs. 3 and 4) to determine
the conditions under which critical slowing down appears
in a power system model. In the stochastic version of the
model, we gradually increase stress by linearly increasing the
mechanical power of the generator Pm. To inject noise, we
add noise to the infinite bus voltage (V2, with angle 0). We
model the noise as a bandwidth-limited Gaussian white noise,
where the voltage at Bus 2 is:

V2(tk) = 1.0 +N (0,σ"V ) ∀tk ∈ {0, 0.1, 0.2, . . .} (13)

and N is a Gaussian random variable of zero mean and
standard deviation σ"V . Between the discrete, 100ms noise time
steps, V2(t) is interpolated using a cubic spline. The noise
magnitude σ"V is set to 0.01 p.u. The stochastic infinite bus
simulates the effect of small, exogenous voltage flicker in the
larger system to which the generator is connected [47]. A
similar model, with noise in the generator power rather than
the infinite bus voltage, is explored in [48].
The remaining set of parameters inherited from the classic

SMIB model are set as follows: Ea = 1.1 p.u., Xd = 0.1,
D = 1.5 p.u., M = 3 p.u. and Z12 = j0.1 p.u. The
trajectories of δ and θ1 are calculated using a variable step size,
explicit trapezoidal differential-algebraic equation solver [49].
The output data from the DAE solver (most notably |V (t)| and
θ1(t)) are subsequently sampled at 30 Hz to obtain simulated
synchrophasor data.
Critical slowing down becomes apparent in this model in

several ways. As the dominant frequency of the system de-
creases, the relaxation time will increase, which is a symptom
of CSD. Also, as the system approaches the point of transition,
small changes in δ or in the noise (V2) will substantially
change the dominant frequencies in the system, resulting in
a wider range of frequencies being present in the signal. This
phenomena is sometimes apparent as flicker, which is another
sign of CSD. Both of these phenomena can be observed in
the power spectral density of the signal as an increase in the
power of lower-frequency components, as well as an increase
in the order 1 AR coefficient.
Figure 3 shows the results that emerge from the two bus

model as it is forced toward the maximum power transfer
limit. Providing evidence in support of our conjecture that
CSD is present before the critical transition, the order 1 AR
coefficient (a1) and variance (σ2) in the phase angle data at
Bus 1 increase notably minutes before the system hits the point
of maximum power transfer. Kendall’s τ (Table I) indicates
that these increases are statistically significant. Furthermore
the power spectral density of the signal (middle panel in Fig.
3) shows substantial increases in low-frequency signal power,
relative to the power of the noise, as the system approaches
the critical transition.

Figure 3. Evidence of critical slowing down in a two-bus (SMSIB) power
grid model being driven toward the point of maximum power transfer. The
top panel shows the bus 1 voltage phase angle θ1 before and after detrending.
The middle panel shows the power spectral density of the detrended signal
and the input noise for vertically projected time intervals. The lower panel
shows the first order autoregression coefficient and the signal variance.

Table I
KENDALL’S τ , AND SIGNAL-TO-NOISE RATIOS FROM THE SMSIB MODEL

Time range for τ calculation
(−4, −3] (−3, −2] (−2, −1] (−1, 0]

τa1
0.6294∗ 0.6000∗ 0.5344∗ 0.6384∗

τσ2 0.6814∗ 0.0525 0.8087∗ 0.8395∗

SNR [0-0.15 Hz] 0.7747 1.7181 3.4764 7.2975
(*) indicates that τ is statistically significant at the P < 0.0001 level.

B. Three-Machine, Nine-Bus power system model (9 bus)

As a classic example multi-machine system, we utilize the
Anderson and Fouad nine-bus test case [46] for the second
set of experiments. The generators were modeled with order
IV machines controlled by IEEE Type II exciters and turbine
governors. As in Sec. IV-A, we injected bandwidth-limited
Gaussian white noise into the system; in this case perturbing
the loads. In order to stress the system and drive it toward
a bifurcation, we steadily increase the baseline load and
calculate the DAE trajectories with fixed a 1ms time-step
trapezoidal integration (using the PSAT simulator [50]). The
output variables are subsequently sampled at 30 Hz. Figure 4
illustrates the results of applying the CSD detection method to
the nine-bus case. As with the single machine case, evidence
of CSD is present minutes before the critical transition occurs.
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Figure 4. Evidence of critical slowing down in a three-machine, nine-bus
power grid model being driven toward a bifurcation. The top panel shows the
bus 3 voltage magnitude |V3| before and after detrending. The middle panel
shows the power spectral density of the detrended signal and the input noise
for vertically projected time intervals. The lower panel shows the first order
AR coefficient and the signal variance.

Table II
KENDALL’S τ , AND SIGNAL-TO-NOISE RATIOS FOR THE 9-BUS CASE

Time range for τ calculation
(−4, −3] (−3, −2] (−2, −1] (−1, 0]

τa1
0.5277∗ 0.4055∗ 0.6240∗ 0.7853∗

τσ2 0.8407∗ 0.8251∗ 0.8514∗ 0.9356∗

SNR [0-0.3Hz] 0.0011 0.0013 0.0058 2.0293

These initial results indicate that when CSD is apparent,
the stressed system processes noise differently than would a
less-stressed one. In order to illustrate this, we represent the
9-bus system with the set of DAEs:

dx
dt = f(x,y)
0 = g(x,y)

(14)

where x are the state variables and y are the algebraic
variables (voltages). If we linearize the system we can obtain
the following state-space matrix:

A =
dg

dy
− dg

dx

(

df

dx

)−1
df

dy

which can be interpreted as the dynamic power flow sensitivity
matrix [50]. The frequency response of the 9 bus network can
be observed by selecting the combination of input and output
channels. Figure 5 shows the magnitude response of |V3| to a
noisy load connected at Bus 5 (P5), for a high load and a low
load case. At high load, the network is less able to damp out
noise over a broad range of frequencies.
In order to illustrate how an aggregated measure derived

from our four CSD indicators would be useful in assisting
real time decisions, we performed the following experiment.
First, we randomly generated 120 different load cases for 9
bus model. In each case the load at the three load buses
increased at a different rate (between 21 and 27% per minute).

Figure 5. Bode plot showing the magnitude response of the voltage
magnitude at bus 3 to a load noise at bus five in the 9 bus power network
for a high and a low load case. When the system is stressed, it is less able
to damp out noise across a wide range of frequencies.

The first 100 cases were used to calibrate a combined metric
of proximity to transition, and the last 20 were used to test
the metric. The data from the calibration cases were used to
construct a multivariate regression model, as shown in (15).
The output of the model (T̂i) is the estimated time to blackout
in seconds. At a given time the predictors are Xi = [a1,i, τa1,i,
σ2
i , τσ2,i].

ln(T̂i) = b0 + b1 ln (a1,i) + b2 ln (τa1,i)
+b3 ln

(

σ2
i

)

+ b4 ln
(

τσ2,i

) (15)

The resulting regression coefficients from 100 training sim-
ulations were b0 = −7.601, b1 = −5.305, b2 = −0.084,
b3 = −0.732, b4 = 0.396.
Finally, in order to test the model in (15) we measured

each of a1, τa1
,σ2, τσ2 for each second during the last three

minutes before the transition for the 20 test cases, and used
(15) to estimate the time until the critical transition. Figure
6 shows the mean, 10th and 90th percentiles for the 20 test
runs. Samples with negative τ were not included in the figure.
As the critical transition approaches, this simple regression
model provides a good estimate of the distance between the
current operating point and the critical transition. It is certainly
possible that more sophisticated models would yield a better
prediction. However, the fact that good predictions resulted
from the simple model provides evidence that this approach
is useful.

C. Western Interconnect blackout of August 1996 (WECC)
On August 10, 1996 a long sequence of events resulted in

the separation of the North America Western Interconnection
into five sub-grids and the interruption of electric service to 7.5
million customers. Reference [51] describes the sequence of
events leading up to the blackout, and [52] provides a detailed
analysis of the power system dynamics during the event. In
[51], the WSCC (now WECC) disturbance study committee
provided about 10 minutes of measured bus voltage frequency
data from the Bonneville Power Administration territory, up
until the point of separation. In order to test for CSD in
these data, the printed frequency charts were scanned and
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Figure 6. Predicted distance to critical transition for 20 load stress scenarios
of the three-machine, nine-bus (NB) model. Solid dots represent the mean
output of the multivariate regression model for the set of test scenarios. The
cross markers represent the percentile 10 (lower line) and 90 (upper line)
outputs of the model for the set of test scenarios. The dashed line represents
a perfect prediction.

translated into a numerical time series and the tests described
above were repeated. As was found with the two and nine bus
models, the order 1 autoregression coefficient and variance
in the frequency signal increase significantly as the critical
transition approaches, as does the density of low frequency
changes (See Fig. 7). Kendall’s τ shows that the increases in
autocorrelation are statistically significant.

Figure 7. Evidence of critical slowing down in the frequency as measured
at the Bonneville Power Administration, immediately before the blackout of
August 10, 1996. As in figures 3 and 4, the low-frequency components of
the signal (middle panel) increase notably immediately before the transition
occurs. In this case, our ‘distance to critical transition’ model (See Eq. 15)
would predict the blackout 3 minutes before the major separation.

Table III
KENDALL’S τ FOR THE WECC CASE

Time range for τ calculation
(−4, −3] (−3, −2] (−2, −1] (−1, 0]

τa1
0.5452∗ 0.8536∗ 0.7399∗ 0.4306∗

τσ2 0.5812∗ 0.7705∗ 0.9311∗ 0.8623∗

V. CONCLUSIONS

This paper describes a method for estimating the proximity
of a given power system operating point to a point of critical
transition (which would typically lead to instability). The
proposed predictor is unique in that it is based solely on the
measured variance and autocorrelation in a single stream of
high sample-rate voltage data, such as would proceed from
a synchronized phasor measurement unit. Theoretical and
empirical results from the study of critical slowing down and
stochastic fast-slow systems show that increases in variance
and autocorrelation signal proximity to critical transitions in
many complex systems. We find these same indicators in a
single machine, two bus model, a nine bus model, and in data
from the large Western U.S. disturbance of August, 1996. In
the 9-bus model, the indicator predicted the temporal distance
to critical transition with substantial accuracy, particularly as
the critical transition approached. We also found that, as the
size and complexity of the benchmark system increased, the
predictive ability of the indicators increased. Unlike traditional
stability methods, the proposed statistical approach does not
rely on network models and could therefore be useful even
if state estimators fail, so long as the operator has access to
time-synchronized phasor data. In the future, as more PMU
data become available, this approach may be improved with
the simultaneous use of multiple data streams.
It is important to note that the proposed proximity indica-

tor, because it is statistical, does not indicate with certainty
whether a given operating trajectory will result in instability.
While the general approach described here is simple, the
results suggest that it is feasible to obtain useful information
about distance to instability from a small quantity of time-
series data.

APPENDIX

The CSD identification method that this paper proposes
requires the selection of a few parameters that depend on the
specific nature of the dynamical system in question. Steps 1
and 2 of the algorithm (Sec. III) make use of two of these
parameters: the window size (T ) and the GKS filter width
(σf ). This appendix describes results from sensitivity analysis
on the 120 transition test runs shown in Fig. 6. For each of
the 120 cases we computed the coefficient of determination
R2 for a range of values for T and σf (see Fig. 8).
Lastly, we studied the impact of using the first order

autoregression models instead of higher order models. Fig. 9
illustrates that the first order autoregression coefficient shows
similar trends relative to the higher order coefficients. Both
the first and higher order coefficients identify a shift in signal
power from higher frequencies toward lower frequencies.
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Figure 8. The coefficient of determination, R2, for the predicted distance-
to-transition values versus the empirical values given different ranges of
parameters as inputs for the method described in Sec. III. The marked values
at T = 120 sec. and σf = {5, 10} sec. correspond to the experiments in
Sec. IV.

Figure 9. Higher order autoregression coefficients corresponding to the nine-
bus, three machine scenario experiment in Section IV-B (see also Fig. 4).
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