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A “Random Chemistry” Algorithm for Identifying
Multiple Contingencies that Initiate Cascading

Failure
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Abstract—This paper describes a stochastic “Random Chem-

istry” (RC) algorithm to identify multiple (n− k) contingencies

that initiate large cascading failures in a simulated power system.

The method requires only O(log(n)) simulations per contingency

identified, which is orders of magnitude faster than random

search of this combinatorial space. We applied the method to

a model of cascading failure in a power network with n = 2896
branches and identify 148, 243 unique, minimal n − k branch

contingencies (2 ≤ k ≤ 5) that cause large cascades, many

of which would be missed by using pre-contingency flows,

linearized line outage distribution factors, or performance indices

as screening factors. Within each n− k collection, the frequency

with which individual branches appear follows a power-law (or

nearly so) distribution, indicating that a relatively small number

of components contribute disproportionately to system vulner-

ability. The paper discusses various ways that RC generated

collections of dangerous contingencies could be used in power

systems planning and operations.

Index Terms—Contingency screening, cascading failure, power

systems reliability

I. INTRODUCTION

Power systems are generally operated according to the n−1
security criterion, where any single one of n components can
fail without violating bus voltage, branch flow or stability
limits. This approach works well if the probability of k

multiple, nearly simultaneous failures (n−k contingencies) is
vanishingly small. However, n−k contingencies do occur and
sometimes trigger sequences of cascading outages that result in
large blackouts, such as the events of August 14, 2003 in North
America [1] and November 4, 2006 in Europe [2]. Because
blackout sizes have a power-law (scale-free) size distribution
[3], the risk due to multiple, simultaneous outages is large,
despite the relatively small probabilities of these events. As a
result, North American reliability standards now require that,
“Each Transmission Operator shall operate to protect against
instability, uncontrolled separation, or cascading outages re-
sulting from multiple outages” [4].

In order to meet current standards, there is a need for tools
to support efficient n−k analysis. However, the computational
complexity of finding high-impact n− k contingencies makes
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complete enumeration and random search infeasible. Exhaus-
tive n − k analysis requires n!/(n − k)! simulations if we
assume that sequence matters, and n!/(k!(n−k)!) if sequence
is ignored [5]. For a system with n = 104 components
that could fail, simulating all n − 3 contingencies would
require more than 1011 simulations, which is computationally
infeasible. Due to the size of the search space, random search
methods such as Monte-Carlo simulation are not sufficient.

Numerous techniques have been proposed to reduce the
computational burden associated with multiple contingency
analysis. The earliest contingency screening methods involved
developing a performance metric that correlates to system
stress, and evaluating the sensitivity of this metric to various
component outages (e.g., [6], [7]). For multiple contingency
analysis, Ref. [8] proposes a method that uses event trees and
substation configuration data to identify collections of prob-
able multiple-failure combinations. Reference [9] describes a
method to identify collections of n−k contingencies that result
in overloaded transmission lines using line outage distribution
factors (see Sec. IV-F). Optimization methods have also been
proposed to identify high-impact n−k contingencies [10]-[12].
Such optimization approaches can identify small sets of the
highest-impact vulnerabilities, but are not designed to identify
large unbiased collections for statistical analysis.

Most existing screening and optimization methods are based
on identifying disturbances that result in limit violations.
However, the presence of a limit violation is not a sufficient
condition for a cascading failure. In many cases, limit viola-
tions are eliminated after one or two subsequent component
outages and do not result in significant loss of load (e.g., the
small cascade of July 3, 1996 [13]).

A method that could efficiently identify large unbiased
collections of n−k contingencies that lead to cascading failure
could be useful for a variety of planning and operations appli-
cations in power systems engineering. Such collections could
be used to provide valuable insight into the risk associated with
large blackouts (e.g., by serving as input to risk estimation
methods [14], [15]), estimate a system’s cascading outage
propagation rate [16], or serve as test scenarios in assessing
the efficacy of a given procedure or control system designed to
protect against cascading outages. Along planning time hori-
zons, knowing the relative contributions that individual com-
ponents make to n−k vulnerability could be used to prioritize
components for upgrades or preventative maintenance (such as
checking for hidden relay failures). Subsequently, the method
could be used to estimate how upgrades to these components
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would impact the resulting dangerous contingency collections.
For operational time scales, the method could be used to
flag transmission lines that contribute disproportionately to
multiple contingency vulnerability in order to assist operators
with decisions that affect power flow on these lines.

Thus motivated, the goal of this paper is to describe a search
method for efficiently identifying large collections of minimal
n − k contingencies (for k simultaneous outages) that lead
to large cascading failures in a simulated power system. Our
paper is organized as follows. Sec. II describes the proposed
search method and the cascading failure simulator with which
we test the search, and Sec. III describes the test grid used
in the experiments. Sec. IV describes experimental results
that illustrate the method and some patterns in the resulting
contingency sets. We provide some discussion and conclusions
in Sec. V.

II. ALGORITHMS

A. Random chemistry (RC) algorithm
We have developed a stochastic approach for rapidly iden-

tifying a minimal simultaneous n− k contingency that results
in system failure. By “minimal”, we mean that no smaller
subset of the k outages result in system failure. Here we
will use U to represent the universal set of all n possible
outages, and we assume that the system is initially n−1 secure.
“System failure” is defined as a sequence of cascading outages
that exceeds some user-specified blackout size criterion. For
brevity, we hereafter use the phrase “malignancy” or “malig-
nant contingency” to mean a minimal set of k outages that
result in system failure.

Our approach was originally inspired by Kauffman [17],
who outlined a simple hypothetical nonlinear feature-set se-
lection procedure (dubbed “Random Chemistry”) for stochas-
tically detecting small auto-catalytic sets of k nonlinearly
interacting molecules out of a large number of n candidate
molecules, in only O(log(n)) steps. More recently, Eppstein
et al. [18] adapted this idea into an algorithm for finding k

epistatically-interacting genetic variations that predispose for
disease in genome-wide association studies.

The paragraphs that follow describe a version of the Ran-
dom Chemistry (RC) algorithm adapted to find malignant n−k

malignancies in a power system.
RC Step 1: Search for a (large, non-minimal) random

set S of component outages that causes system failure. An
initial target set size kinit is specified, and random combina-
tions of outages of components in U , each of size kinit, are
tested until a set S is found that causes the system to fail. If
no such set is found within some constant number of tries T ,
the target set size kinit is doubled (although it is truncated to
a maximum size of n) and the process is repeated. As long as
kinit is sufficiently large, this step typically requires only one
or a few tries, since it is trivial to find a large (non-minimal)
set of outages that cause system failure. In the worst case, this
step is guaranteed to terminate successfully when S = U , so
is upper bounded by O(log2(n− kinit)) trials. For the results
in this paper, we used kinit = 80 and T = 20.

RC Step 2: Reduce the size of the discovered set S

by stochastically reducing the set by a constant fraction.

Figure 1. The set reduction process in the RC algorithm, illustrated for the
RC parameter settings used in this work. In RC Step 1, a large random set of
branch outages is identified that results in system failure. During RC Step 2,
the candidate set of component outages S is repeatedly stochastically reduced
by the fractional amount indicated and then tested with a simulator; as soon as
a reduced set of outages is found that results in a system failure, the reduced
set is accepted and the reduction process is repeated on the smaller set. If the
maximum number of tries T is ever exceeded, the RC trial is aborted and a
new trial is initiated. In RC Step 3, after the set size has been reduced to kmax,
the set is linearly pruned until a minimal n− k malignancy is identified, for
2 ≤ k ≤ kmax. Dashed arrows denote optional paths, depending on stochastic
results.

Up to T random subsets of S, each of size |S|/C (truncated
to not less than a final target set size kmax) for some small
constant C, are tested until a new subset S2 is found that
still causes system failure. S is then replaced by S2 and
the process is repeated until |S| = kmax, where kmax is a
small positive integer that provides an upper bound on the
malignancy size k sought by the algorithm. If, at any point, the
number of attempts surpasses the specified maximum number
of tries T , this RC search run is aborted and is considered
a "failed" RC trial. (Note, however, that a "failed" RC trial
simply implies that the smallest minimal n − k malignancy
contained in S probably has k > kmax, which is larger than
what we are seeking). This set reduction step is upper bounded
by O(logC(kinit − kmax)) trials, where kmax < kinit ≤ n. To
reduce the number of aborted runs, we use a larger (more
aggressive) C = 2 when the set size is greater than 20, and
then reduce C to 1.5 for |S| ≤ 20.

RC Step 3: Prune individual outages from the remaining

set S until a minimal n − k malignancy is identified.
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Individual components are tested for possible removal from
S, until a minimal malignant subset is identified (that is, the
resulting set of outages S results in system failure, but no
smaller subset of S does). This step requires between kmax−2
and

�kmax

i=3 i simulations.
Each execution of the RC algorithm (comprising RC Steps

1-3, above) is thus upper bounded by O(log(n)) grid simula-
tions, as graphically depicted in Fig. 1. The specific number
of trials required to achieve a “successful” RC run (i.e., when
RC Step 2 succeeds in reducing |S| to kmax), and the number
of simulations per RC run, both vary stochastically and are
a function of the particular grid as well as the RC param-
eter settings. The runtime of the RC algorithm is relatively
insensitive to the choice of the initial set size kinit. However
the choice of the constant kmax is more important. If kmax is
too large, then the runtime becomes dominated by RC Step 3
(which, although is technically upper bounded by a constant
time, requires up to

�kmax

i=3 i simulations). On the other hand,
if kmax is too small, then there is a higher probability that RC
Step 2 will fail, since it becomes increasingly likely that the
smallest minimal n − k malignancy contained in S is larger
than kmax. In practice, we observe that choosing kmax = 5
provides a good balance between these constraints.

B. Obtaining large collections of malignancies

The RC algorithm is repeated as many times as desired to
sample the space of n−k minimal malignancies (for 2 ≤ k ≤
kmax). Since RC trials are independent, the likelihood that a
duplicate malignancy will be found increases as the collection
of identified malignancies grows. If one has identified j out
of mk malignancies (for a given k), of which i are unique,
then the probability pj that the next n− k malignancy found
is unique is:

pj =
mk − i

mk
(1)

If a sufficient fraction of the complete collection of malignan-
ices for a given k is identified, then the rate of change in pj

becomes observable. We can take advantage of this to estimate
the size of the complete collection mk, as follows. Taking the
reciprocal of (1), the expectation is that the next unique n−k

malignancy will be found after a total of ∆j = p
−1
j additional

n − k malignancies have been found. Solving for mk yields
the expected value:

m̂k =
i∆j

∆j − 1
(2)

As i → mk, the error in this estimate of mk decreases. The
error can be further damped by averaging over successive esti-
mates of m̂k as j is further increased (skipping the singularities
in m̂k where the observed ∆j = 1).

The stochastic set reduction approach of the RC algorithm is
inherently biased toward finding malignancies with lower k, by
virtue of the fact that the number of contained subsets of size
k is largest for k = |S|/2, in conjunction with the observation
that the frequency with which a random subset of a given size
k causes system failure decreases with increasing k (see Sec.
IV). However, as long as a uniform random number generator

is used for selecting subset components in RC Steps 1 and 2,
the pruning of components in RC Step 3 is done in a uniformly
randomly permuted order, and the search is terminated when
the first minimal n−k malignancy is identified during pruning,
then repeated application of RC search will yield unbiased
collections of n−k malignancies, for a given k. Alternatively,
if the aim is to further decrease the search time and increase
the success rate of individual RC trials, one could elect to
non-uniformly bias the selection of subsets (e.g., by selecting
branch components with probabilities corresponding to pre-
contingency flows) in RC Steps 1 and 2, and to exhaustively
search for and return all minimal n−k malignancies embedded
in the final set S in RC Step 3. However, doing so would
necessarily propagate this sampling bias into the resulting
collection of n− k malignancies.

C. Cascading failure simulator (CFS)
The modeling of cascading failure in power systems is a

challenging problem. There are many mechanisms by which
a small set of disturbances can propagate to become large
blackouts, including cascading thermal overloads, relay failure,
voltage collapse, dynamic instability, and operator error [5].
Different modeling approaches have advantages and disad-
vantages in terms of capturing subsets of these mechanisms
[19]. High-level statistical models [20], [16] provide high-
level information about system risk, but are not designed to
identify specific components that contribute to risk. Some have
presented work on purely topological models of cascading
failure [21], however the flow patterns in these models differ
substantially from those described by Kirchhoff’s and Ohm’s
laws, and therefore need to be treated with caution [22].
Models of cascading failure that are based on a dc power
flow, such as OPA [23]-[24], are computationally efficient and
numerically stable and thus facilitate statistical observations
from large numbers of simulations. However dc power flow
models have known limitations [25], and cannot capture some
aspects of cascading failure, such as dynamic instability,
voltage collapse or distance relays. Sequential static cascading
failure models based on the ac power flow exist [26], [27], but
are more computationally intensive and require that one make
assumptions to handle power-flow cases that do not converge.
Dynamic, mid/long-term transient stability models of specific
historical cascading failures exist (e.g., [28]), however these
models tend to require extensive calibration and are very
computationally expensive. Even a full dynamic model of cas-
cading failure requires assumptions, since operator behavior is
almost always a critical component to cascading failure, and
many of the system parameters (such as area control error
management procedures) are unknown.

Thus all cascading failure models simplify power system
dynamics to some extent. Because this paper focuses on the
evaluation of the RC algorithm, and because there is not yet
a generally accepted and publicly available ac power flow
model of cascading failure, the simulator used here is based
on the dc power flow approximations (modified from [22]).
The simulator described here can easily be replaced with a
different one that is more appropriate to a particular type of
cascading failure.
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Figure 2. Algorithm flow diagram for the cascading failure simulator (CFS)
used in this study.

Figure 2 illustrates our cascading failure simulator (CFS),
which is designed to test whether an n−k contingency results
in system failure. The paragraphs that follow describe CFS in
additional detail.

CFS Step 1: Initialize power flow. Initialize the simulation
by calculating pre-contingency power flow on a power system
that has been initially dispatched to ensure n−1 security with
respect to the universal set (U ) of n components that can fail.

CFS Step 2: Apply contingency. Apply the n − k con-
tingency to the system by changing the status of the k failed
components, then update the system susceptance matrix B and
identify the separated islands in the system.

CFS Step 3: Check for system failure. If “system failure”
is detected, based on some user-defined criterion, terminate
the simulation and mark this contingency as malignant.

CFS Step 4: Re-dispatch and recalculate power flow. If
the results from Steps 2 or 7 indicate that the system has just
separated into additional islands, re-dispatch the generation
in each new island as follows. First, allow generators to
ramp up or down to match supply and demand as closely as
possible, constrained by limits Pg,min(t) and Pg,max(t). These
limits are set to the most restrictive of either the upper and
lower generation limits of the machine or the ramp rate of
the machine times the amount of time since the last power
flow calculation. Thus, for cases with longer time periods
between power flow calculations, generators are allowed to
increase/decrease output over a greater range of values. If,
after re-dispatching generators, there remains more generation
than load (R = (

�
g∈G Pg −

�
d∈D Pd) > 0, where G is

the set of generator buses, and D is the set of load buses),
generators in this island are tripped sequentially, starting with
the smallest machine, until R ≤ 0. The rationale for allowing
generator tripping to correct for supply surplus cases is that
generator ramping can be a slow process; when automatic
generation controls cannot quickly correct frequency error,
some generators will likely trip as a result of overspeed relays.
If, after this, R < 0 load is shed by multiplying all loads in the
island by a scalar λ =

�
g∈G Pg/

�
d∈D Pd. After achieving a

balance between supply and demand in each island, a standard

dc power flow calculation is used to find power/current flow
on each transmission line. Because a supply/demand balance
is achieved before this power flow calculation, the solution
will be independent of the choice of a reference bus. If no
branches are overloaded after the power flow calculation, the
simulator terminates and indicates that this contingency did
not result in system failure.

CFS Step 5: Update relays. Use a time-delayed overcurrent
relay on each branch to determine when/if a branch trips due
to overload. While it is decreasingly common for overcurrent
relays to be used in the bulk power grid, these relays approx-
imately represent a number of processes by which branches
may shut down, such as the overheating of a transmission line
and sagging into vegetation, the time an operator is willing to
tolerate an overload before manually disconnecting the line, or
backup relaying systems, such as Zone 2 or Zone 3 distance
protection. In CFS branch j, with power flow fj and flow limit
fj , fails if its accumulated overload (oj) exceeds a limit oj .
The accumulated overload between time periods t and t+∆t

(∆oj) is calculate from:

∆oj(t,∆t) =

�� t+∆t
t (fj(t)− fj)dt, if fj(t) > fj

0, otherwise
(3)

The threshold oj is chosen such that a transmission line will
trip after 5 seconds of being 50% above the branch flow limit.
As defined, if branch j’s flow is more than 150% of its limit, it
will trip faster, and slower for less than 150%. To find ∆t, the
simulator finds the minimum time until the next branch fails.
Practically this means that, unless there are two branches with
identical state variables oj(t) and fj(t), not more than one
branch will trip at each iteration of the algorithm.

CFS Step 6: Advance time until the next branch failure.

Set t = t+∆t, with ∆t as selected in CFS Step 5.
CFS Step 7: Trip branch(es). Switch the branch status to

failed for each branch for which a relay has tripped and update
B to reflect the change in network structure.

CFS Step 8: repeat from CFS Step 3. Continue until either
there are no remaining overloaded branches, or until a system
failure is detected.

It should be noted that CFS is similar to other quasi steady
state cascading failure models. Our model differs from the
short-term behavior of OPA [23] only in the method by which
generation is re-dispatched after system separation and in
that branch failure is treated deterministically. Whereas OPA
frequently re-dispatches generators using an algorithm that
seeks to satisfy the line flow constraints, here we assume
that the system operators have limited ability to optimally
re-dispatch generation during a cascading failure, and rely
largely on automatic generation control to achieve a new power
balance. The model is also similar to those described in [29]
and [30], except that CFS allows for generator tripping to
correct for extreme imbalances, whereas [29] and [30] allow
generators to ramp quickly between Pmin and Pmax.

III. TEST NETWORK

We applied the RC search method to identify minimal n−k

contingencies that trigger system failure in a model of the 2004
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peak winter Polish transmission system, which is available
with MATPOWER [31]. The test case has n = 2896 branches
(transmission lines and transformers), 2383 buses, and 24.6
GW of load. The pre-contingency dc branch power flows have
a mean of 34.3 MW, median of 18.7 MW, standard deviation of
53.8 MW, and maximum of 918 MW. We increased 12 of the
initial branch flow limits to achieve a pre-contingency power
flow case such that no single branch outage could trigger
cascading system failure, as defined below. After doing so,
all of the pre-contingency flows were less than 95.2% of their
long-term (Rate A) limits. With the case thus prepared we
applied the RC method with U defined as the set of all 2896
branches in the network.

For the results presented here, “system failure” is defined
as a state in which at least 10% of the buses are no longer
connected to the largest island. While various definitions of
system failure could be employed, we selected a network-
separation-based measure of system disruption, rather than a
load-shed-based one, for several reasons. Most importantly,
the method chosen to rebalance supply and demand after the
grid separates into islands becomes increasingly important as
the network subdivides. Once significant network separation
occurs, the system is clearly in a dangerous state, but the size
of the blackout that will result depends heavily on automated
control and operator actions, making the simulation results
increasingly uncertain. To compare load shedding and network
separation metrics, we measured the blackout sizes in MW
and fraction of nodes separated for all n − 2 contingencies
in the test network that were either predicted by (4) to cause
overloads or found by the RC method to cause separation of at
least 10% of the buses. The histogram in Fig. 3 shows a tri-
modal distribution, with a natural break between the lowest
and middle modes at 15% separation (for clarity, we only
show contingencies resulting it at least 3% separation). All
of the disruptions larger than 15% separation caused a loss of
at least 1727 MW of power (Fig. 3, right panel); by lowering
the threshold to the more conservative 10% separation, we
were able to detect all of the the disruptions in the middle and
highest modes, as well as most (all but 5) of the disruptions
in the lowest mode that also caused a power loss of at least
1727 MW (Fig. 3, right panel, above and to the right of the
dashed lines).
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Figure 3. Left: histogram of disruption size, shown for n− 2 contingencies
causing at least 3% separation. Right: Scatter plot of the relationship between
power loss and percent of buses separated. Dashed lines indicate the thresholds
used for major disruptions defined as ‘system failure’.
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Figure 4. Comparing the number of unique versus total n− k malignancies
found by the RC algorithm, for a given k ∈ {2, 3, 4, 5}, gives an indication
of how complete the collections are for each value of k. The inset shows a
close-up near the origin showing the curve for all n− 2 malignancies found.

IV. RESULTS

A. Collections of malignancies identified with RC search

We report on 735,500 successful RC trials, in which we
identified a total of {336, 25059, 95677, 27171} unique {n−
2, n− 3, n− 4, n− 5} malignancies, respectively. It is highly
likely that the 336 unique n − 2 malignancies found form
a complete collection, since no new n− 2 malignancies were
found in over 7×105 successful RC trials after the last unique
n − 2 malignancy was identified (Fig. 4); this number also
agrees closely with the estimate of m̂2 = 338 obtained using
the method described in Sec. II-B. The asymptotic behavior of
the n−3 curve (Fig. 4) implies that the identified collection of
unique n−3 malignancies is approaching completion, and we
estimate m̂3 = 2.69 × 104. On the other hand, the identified
collections of unique n − 4 and n − 5 malignancies are far
from complete, as most newly identified n− 4 and n− 5 sets
continued to be unique (Fig. 4).

In 1000 successful RC trials on this system and with these
settings, we observed that it took an average of 1.57 RC trials
to successfully find an n − k malignancy, for 2 ≤ k ≤ 5.
Some of these RC trials required as few as 12 simulations,
while others required up to 147 simulations, with a mean of
48 simulations per RC trial. On the test system with kmax = 5,
we identified minimal malignant sets with k = {2, 3, 4, 5}
in {50%, 30%, 16%, 4%} of the successful RC trials, respec-
tively. Thus, for this system, it typically requires an average of
only about 151, 251, 471, and 1884 (= 48×1.57× 100

{50,30,16,4} )
simulations to find an n−{2, 3, 4, 5} malignancy, respectively.

B. Efficiency of RC search vs. random search

The expected number of simulations required to find one
out of 336 n − 2 malignancies using random search on this
grid would be 12, 476 =

�2896
2

�
/336. Using our estimate of

m̂3, the expected number of simulations required to find an
n − 3 malignancy using random search on this grid is about
150, 000 ≈

�2896
3

�
/(2.69×104). Thus, random search requires
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shifted to the right by one so that branches occurring in zero malignancies
are shown at the far left, with counts indicated.

about 85 times as many simulations as RC search to find an n−
2 malignancy in this grid model, and about 600 times as many
simulations as RC search to find an n− 3 malignancy. While
it is impossible to reasonably estimate the number of n−4 or
n− 5 malignancies in this system (since these curves in Fig.
4 have not begun to asymptote), and empirical studies using
random search yielded too few n − 4 or n − 5 malignancies
to reliably estimate success rates, it is likely that the relative
efficiency of RC search compared to random search continues
to grow as k increases.

C. Individual branch contributions to system vulnerability
Out of the 2896 branches in the system, we observed a

total of 192, 1812, and 2487 individual branches that occurred
in at least one n − {2, 3, 4} malignancy, respectively. (Since
the k − 5 collection is so small (Fig. 4), we have omitted
these data from this subsection.) The frequencies with which
branches occurred in n − k malignancies follow very heavy-
tailed distributions with modes at 0 (Fig. 5). The (presumably
complete) n − 2 collection of malignancies exhibits a strong
fit to a power law distribution (R2 = 0.96). The frequency
distributions for higher k malignancies span several orders of
magnitude and appear to be approaching power law distri-
butions (with shallower slopes at higher k), but show more
truncated tails (Fig. 5), probably resulting from the fact that
these collections are not complete.

Most branch outages never or rarely interacted with other
branch outages to trigger cascading failures (Fig. 5, points
near the left). In this study, 98.7%, 98.1%, and 96.7% of all
branches occurred in ≤ 1% of the n− {2, 3, 4} malignancies,
respectively. Conversely, a few branches appeared in very large
numbers of malignancies (Fig. 5, points in the heavy tails on
the right), and thus contributed disproportionately to system
vulnerability. For example, in this system one branch occurred
in 112 (33% of all) n − 2 malignancies. As k increased,
several individual branches were found to occur in thousands
of malignancies. However, owing to the large numbers of
malignancies at high k, no single branch occurred in more than
17% of the identified n− 3 malignancies or in more than 6%
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Figure 6. Frequency histograms for pre-contingency branch power flows.
The top subplot shows the distribution of pre-contingency flows of all 2896
branches. The remaining four rows of subplots correspond to the distributions
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k = {2, 3, 4, 5} respectively, where the first column shows the minimum pre-
contingency flow of the k branches, the second column shows the maximum
pre-contingency flow of the k branches, and the third column shows the sum
of flows in all k branches.

of the identified n−4 malignancies. Practically speaking, this
means that as k increases it becomes increasingly difficult to
predict which line failures contribute to system vulnerability
based on metrics designed for n − 1 or n − 2 contingency
screening.

D. Power flow characteristics of branches in malignancies
When a transmission line or transformer fails, the current

that was previously moving through that branch is immediately
re-routed to parallel paths to satisfy Kirchhoff’s and Ohm’s
laws. Thus, the more power that is interrupted by the outage,
the more the flows on parallel transmission paths will increase,
or decrease, which may result in an overloaded component and
trigger a cascade. Therefore, it seems reasonable to conjecture
that there is a relationship between the amount of power
flowing through a transmission line and the frequency with
which it occurs in n − k malignancies. Consequently, we
compared the distributions of pre-contingency branch flows in
the system as a whole, with those of the branches that occur
in various n− k malignancies. While the maximum and sum
of the pre-contingency flows in all k-branches participating
in a given n − k malignancy tends to be relatively high
(Fig. 6, columns 2 and 3, respectively), the minimum pre-
contingency flow of one of the k branches in a malignancy
may be quite low, especially as k increases (Fig. 6, column
1). This indicates that in many cases the joint failure of a large
transmission line and one or more small ones can interact to
trigger large blackouts. If conventional contingency screening
methods were used to initially prune out transmission lines and
transformers with less than 50 MW from the set of possible
component outages (U ), 12% of the n − 2 malignancies
would not have been found, and the problem gets worse as
k increases. Doing so would have hidden {49%, 62%, 83%}
of the n− {3, 4, 5} malignancies found in these experiments,
respectively.
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E. Malignant vs. flow-matched benign pairs
We selected 336 new pairs of branch outages, such that

the distributions of the minimum, maximum, and sum of the
pre-contingency flows in these 336 new branch pairs were
statistically identical to those of the 336 n − 2 malignancies
(KS test, p > 0.99). We verified that none of these new
pairs triggered system failure, and henceforth refer to them
as "benign pairs". We then searched for network features that
might distinguish malignant from benign pairs. To date, we
have found no significant differences in the distributions of
individual branch metrics, including pre-contingency flow and
measures of network centrality, applied to the 115 branches
that occur in malignant but not benign pairs vs. the 134
branches that occur in these benign pairs but not malignant
pairs. We have found significant differences in the distributions
of some pairwise metrics, including (a) the minimum electrical
distances between branch pairs (KS test, p < 2.5× 10−5) and
(b) the minimum shortest path (in number of hops) between
branch pairs (KS test, p < 4.5 × 10−12). In both cases,
the distribution of malignant pairs was left-shifted relative to
benign pairs, however there is still significant overlap in their
distributions.

F. Assessment of performance indices
Finally, we examined to what extent performance indices

can be used to detect malignant contingencies without simula-
tion, or to reduce the search space so that fewer contingencies
need simulation to identify those that result in large cascading
failure. The change in flows ∆fi|r,s resulting from the simul-
taneous outage of branches r and s, can be computed using
line outage distribution factors (di,j) [32] and the technique
in [9] as:

∆fi|r,s = [ di,r di,s]

�
1 −dr,s

−ds,r 1

�−1 �
fr

fs

�
(4)

Computing ∆fi|r,s for all 4,191,960 branch pairs in the test
system indicated that 186,428 pairwise branch outages would
result in branch overloads. Of these, only 220 resulted in
system failure in the simulator. On the other hand, because line
outage distribution factors do not return values for cases that
separate a network into islands, 116 of the n−2 malignancies
found by RC search were not flagged as overloads using (4).

Eqn. 4 can be used to produce a performance index for
double line outages, following the method of [6], as:

PIr,s =
n�

i=1

wi

�
fi +∆fi|r,s

f̄i

�2

(5)

where wi is a branch weight, and fi is a measure of flow
(power or current) on branch i, with flow limit fi. For
the results reported here we set the weights to normalized
pre-contingency branch flows (wi = fi/

�n
j=1 fj), which

provided improved results over the case with wi = 1, ∀i. If one
were to screen out n−2 contingencies with a post-contingency
change in performance index of ∆PIr,s > 10−3, the search
space is reduced by only 91%, but doing so would preclude the
identification of 4% of the n − 2 malignancies. At a higher
threshold of ∆PIr,s > 10−2, the size of the search space

would be reduced by 3 orders of magnitude, but 42% of the
malignancies would be eliminated from the search set.

V. DISCUSSION AND CONCLUSIONS

This paper describes a stochastic “Random Chemistry” (RC)
method to identify large sets of minimal n− k contingencies
that result in large blackouts in a cascading failure simulator.
The RC algorithm requires only O(log(n)) simulations per
dangerous contingency (malignancy) found, which is orders of
magnitude more efficient than random search for realistically
sized grids.

We applied the RC method to a 2383 bus power system
model and identified 148,243 unique, simultaneous n − k

branch malignancies (2 ≤ k ≤ 5) that result in large
cascading failures. The results show a number of interesting
patterns that illustrate the utility of the RC algorithm. First,
the results indicate that the frequencies with which specific
branches interact to trigger large blackouts follow power
law (or nearly so) distributions. The heavy tails on these
distributions indicate that a small number of branches occur in
orders of magnitude more blackout scenarios than the majority
of branches. Improvements at these locations may have (at
least near-term) reliability benefits. Second, we found that
outages in branches with seemingly insignificant amounts of
pre-contingency power flow can interact with failures in larger
transmission lines to initiate very large cascading failures,
and that the probability of such interactions increases with
increasing k. Due to these interactions, prescreening branches
based on low pre-contingency power flow would preclude
identification of many n−k malignancies. Finally, our results
indicate that, even when using a linearized power system
model, direct linearized methods, such as line outage distri-
bution factors and performance indices, do not predict which
combination of outages will result in large cascading failures
well enough to preclude the need for simulation.

Future work will investigate how this algorithm might be
incorporated into power system applications. For example,
importance sampling techniques can be used to combine prior
information about the probability and importance of compo-
nent failures to generate estimates of blackout risk [14], [15];
the RC method could be used to generate unbiased importance
distributions of component outages (see Sec. IV-C) to be used
as input to such risk estimation approaches. This approach
could be extended for evaluation of the blackout risk effects
of wide area control schemes or system upgrades by simulting
these changes and using the RC method to re-estimate grid
component importance distributions.

The results in this paper were produced assuming that the k

branch outages occur simultaneously. While we acknowledge
that order and timing can have important effects, we have
not yet explored the sensitivity of system failure to the k!
possible orders (each with various timings) of the identified
n−k malignancies. Similarly, our results were produced from
a power system model that captures only a subset of cascading
failure mechanisms. Future work will employ more detailed
cascading failure simulation models, explore the sensitivity of
the results to modeling assumptions, and evaluate the impact
of order and timing on cascading failures.
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