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Abstract— In this work, we propose a strategy for managing the 
charging of plug-in electric vehicles (PEVs) that simultaneously 
avoids overloads and provides demand-based allocation of power 
distribution resources. The strategy leverages (1) a ‘power 
packet’ approach which allocates charging for finite lengths of 
time and (2) a locally defined automaton where a user’s ‘urgency’ 
sets the request rate for charging.  The charge management 
strategy requires very little communications between the PEV 
charger and the power distribution system.  Furthermore, the 
system’s charge manager is blind to which PEV is making the 
request thereby ensuring fairness and privacy.  The work details 
possible implementations of the approach and illustrates the 
methodology through simulations. 

Keywords- plug-in electric vehicles, load management, media 
access control, battery charging 

I.  INTRODUCTION 
Plug-in electric vehicles (PEVs) are touted to have 

numerous societal benefits including the promise to reduce an 
individual’s dependency on liquid fossil fuels for 
transportation.  Charging of personal PEVs is envisioned to 
occur at workplaces, shopping centers, etc., where the power 
delivery infrastructure is already sufficient to support 
commercial endeavors [1].  However, it is more likely that an 
individual will primarily charge their PEV at home thereby 
impacting residential distribution networks, which are often 
more constrained, in addition to impacts on the grid as a whole.  
At the local level, transformers, substations and underground 
cables can age rapidly if operated beyond their specified 
thermal limits due to the additional power draw by PEV 
chargers [2]. 

The authors have recently proposed an automaton-based 
approach for PEV charge management [3], leveraged from the 
domain of wireless sensor networks [4] and random access 
communication channels (e.g., ALOHA and CSMA [5]), in 
order to avoid the aforementioned detrimental effects on the 
distribution infrastructure.  This approach also demonstrated 
fairness and anonymity that we contend is desirable in a charge 
management scheme. That approach was shown to be simple 
and robust, under supply constraints, in controlling the number 
of PEVs charging at any time.  Fundamental to this approach is 
that PEV charging is conducted via power packets; that is, over 
many (e.g., 100s of) discrete time intervals (e.g., 5-15 minutes) 
and that any particular customer must request each and every 
packet. This packetized approach ensures that all PEVs 
regularly compete for charge capacity, which is especially 

important in order to maintain equal access to the supply 
resources under conditions where the distribution system 
capacity becomes constrained. 

In our previous work we assumed that, even if customers 
had different charge needs, they had the same ‘urgency’ to 
receive their charging and there was no price (dis)incentive to 
charging.  These assumptions, however, are not consistent 
with proposed dynamic pricing schemes geared toward 
mitigating detrimental effects of PEV charging (e.g., [6]). 
Initial consideration of user ‘urgency’ was presented recently 
[7]. In that work, we found that ‘urgency’ can be readily 
incorporated in the probabilistic automaton based approach.  
Herein, we expand upon that nascent effort and consider 
various demand-driven charge scenarios. 

The method proposed in this paper has similar goals, but 
differs substantially in implementation from optimization or 
price-based solutions to the charge management problem. 
Optimization-based methods (e.g., [10], [11]) require that 
vehicle owners submit substantial amounts of information to 
grid operators. While this can lead to globally optimal 
solutions, privacy concerns arise when electricity consumers 
are required to declare willingness to pay, arrival and 
departure times, etc. to grid operators. Methods that require 
real-time-pricing have been proposed (e.g., [12]), but these 
require fairly complicated retail tariffs, which many utilities 
have been reluctant to deploy due to concerns from the public 
about such rates. The ‘power packet’ method, on the other 
hand, requires that utilities set up a retail tariff for electric 
vehicle smart charging with different rates for “urgent” and 
“standard” charging modes, which could be selected by the 
user with a simple switch at the charging station. This 
information does not need to be transmitted to the utility, other 
than for billing purposes (which can be handled at the meter 
itself), reducing privacy concerns (see Sec. II). 

This work is organized as follows.  First we review the 
‘power packet’ approach to PEV charge management.  We 
present different automaton designs that accommodate 
customer ‘urgency’.  In each case, the customer’s PEV charge 
request activity would be proportional to the price one is 
willing to pay for charging.  Finally, we illustrate through 
simulation the effectiveness of these approaches in managing 
charge demand and in utilizing the capacity effectively.  A key 
advantage of the proposed approach is that the power 
distribution system is blind to the vehicle from which the 
charge requests are being made and thus anonymity/privacy of 
customers is maintained.  The management approach is simply 
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to determine whether capacity in the systems exists, or not.  
The individual users, through their automatons, manage/adjust 
their behavior accordingly. 

II. PROBABILISTIC AUTOMATON 
The automaton-based approach, first proposed in [3], for 

PEV charge management recognized that both PEV needs and 
the system’s capacity are dynamic, random quantities.  As 
such, managing the charging of each PEV according to a 
predetermined schedule would require significant coordination 
and communications.  This communication would necessarily 
involve detailed customer information and thus create possible 
security/privacy issues.  Alternatively, the probabilistic 
automaton approach has each PEV charger locally determine 
whether to request a charge during any particular time interval 
(i.e., an epoch).  The probability of that request is dictated by 
the state of the automaton.  Automatons are managed through 
a broadcast response by a centralized charge manager 
(nominally located at the distribution station). 

The N-state probabilistic automaton design we are 
leveraging herein was originally developed for managing 
nodes in a wireless sensor network [4, 8].  In that work, the 
design showed the ability control participation of random 
autonomous agents over a wide range of values.  A simple 
version (N = 3) of that automaton is shown in Fig. 1.  For our 
applications, if the PEV charger is in the highest state (i.e., 
right-most state in Fig. 1), it will transmit a charge request 
during the current epoch with probability 1. If the request is 
successful and therefore rewarded by the charge manager, the 
PEV will be charged for the duration of the packet and the 
automaton will stay in that highest state and request a charge 
again in following epoch.  Alternatively, if there is insufficient 
capacity in the distribution system to support additional 
charging, the PEV’s request will be denied and its automaton 
will move to a lower state (which reduces the probability of a 
request occurring in the subsequent epoch to p). 
 

 
Fig. 1. Three-state automaton where p is the probability of charge request 
during an epoch and is proportional to the ‘urgency’ set by the PEV owner.  
Solid lines indicate state changes when automaton is ‘rewarded’; dotted lines 
are state changes associated with ‘punishments’. 
   

As a result of this approach, each PEV requests charge 
independently every epoch based on the probability associated 
with its current state (e.g., 1, p, p2 for the automaton in Fig. 1).  
The charge manager does not track which PEV is requesting 
charge or the state of any particular PEV’s automaton.  All 
requests are treated equally and PEVs adjust their state 
autonomously based only on the feedback provided by the 
charge manager.  

This automaton can be readily adapted to dynamic retail 
electricity tariffs.  Notionally, a customer has a certain 
‘urgency’ to complete a charge over a fixed amount of time.  
This urgency may be tied to the price the customer is willing 
to pay for charging.  If this premise is accepted, then there are 
two (if not more) ways to leverage it for PEV charge 
management, under the power packet approach.   

One approach is to allow the user to set their PEV charger 
in either “urgent” or “standard” modes. This could establish a 
price threshold at which charging will no longer be requested.  
The higher the urgency, the higher is this price threshold.  In 
our automaton design, the current price can influence the state 
at which the automation is in.  A second approach, which 
admittedly has not be explored as a policy, is that users pay for 
the right to request charge.  That is, the state of the user’s 
automaton probability dictates the price paid for every met 
charge request.  Urgent users may set their automaton 
probability (in Fig. 1) to p = 1 knowing that they will be 
requesting charge more frequently and thus be receiving 
power packets more quickly.  A less urgent user may set their 
urgency lower (e.g., p = 0.5) and on average will request at 
half the rate.  Should this user’s request be accepted, the 
power packet would be received at a lower cost than for the 
first user.  However, if charging were denied due to capacity 
issues, the PEV would be punished thus moving it to a lower 
state (e.g., p2 = 0.25) and thereby reducing its request rate.  
This approach will result in less-urgent customers having a 
lower overall probability of completing charge than more-
urgent customers.  That being said, for the same amount of 
charge, the less-urgent customer pays a lower price. 

In both approaches, the customer has control over what 
price they are willing to pay to meet their charging needs.  To 
implement these approaches, the charge manager will simply 
need to determine and present to all customers either a price-
per-packet or a price-per-request rate.  Based on price 
thresholds established by the customer, an automaton can be 
developed that reflects their urgency to charge.  That is, the 
request probability will increase with urgency and will be 
reflected by increasing the values loaded in the automaton’s 
states (i.e., p in Fig. 1). 

III. EXAMPLES 
To illustrate the proposed method, we present simple and 

readily scalable examples in which the charging of 100 PEVs 
needs to be managed.    For sake of illustration, we assume 
Level-1 home charging for these vehicles and that completing a 
full charge (0-100%) takes 10 hours [9].  We consider three 
cases more to illustrate the flexibility and robustness of the 
approach than to provide specific performance numbers. Table 
I summarizes our simulation parameters.  For each of these 
examples we assume each PEV can receive a full 10-hour 
charge (i.e., 120, 5-minute power packets). 

The first two cases consider the same supply profile (Fig. 2) 
that initially accommodates all vehicles but becomes 
increasingly limited.  To illustrate the approach we assume that 
100 PEVs are connected to a feeder that has variable amount of 
power that can be allocated for charging (up to 192 kW). 
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TABLE I   SIMULATION PARAMETERS FOR PEV CHARGING 

Parameter Value 
Charge need per PEV 10 hours (full charge – Level 1) 
Power packet duration 5 minutes 
Case 1 All PEVs at urgency 1.0; charge window 10 

hours 
Case 2 PEV urgency evenly distributed between 

0.2, 0.4, 0.6, 0.8 and 1.0; charge window of 
10 hours. 

Case 3 Urgency profile of Case 2; charge window is 
extended to 12.5 hours providing additional 
capacity 

 

There is a constant demand of 12,000 (120 charge 
intervals/PEV x 100 PEVs) power packets in these cases but 
with a charge window of only 10 hours the overall the capacity 
is 80% of that need (i.e., 9,600 power packets).  For the last 
case, the profile is similar but the overall window length is 12.5 
hours resulting in a full 12,000 power packets being available.  
The objectives of the management scheme are to (1) provide 
priority charging for those customers willing to pay the 
upcharge and (2) ensure all the system capacity is indeed used 
even if customers are stating low urgency. 

A. Case 1: Fixed urgency, Variable capacity 
For Case 1, we consider a worst-case scenario where all 

100 PEVs require the maximum 10 hours (i.e., each PEV 
requires 120, 5-minute power packets) and all users have 
maximum urgency (i.e., p = 1 in Fig. 1).  Clearly this case will 
not accommodate all users fully.  In fact, for the charge 
manager to be fair, it should not accommodate any customer 
fully.  Fig. 3 illustrates the random access approach achieved 
through using the proposed approach.  As illustrated, on 
average each PEV receives 80% of its required charge and the 
system’s capacity, albeit constrained, is fully utilized. 
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Fig. 2. Distribution system capacity in terms of percentage of 100 PEVs 
charging over the simulated 10-hour charge window. 
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Fig. 3. Top: Charge activity over the 10-hour window by PEV ID.  The system 
can initially serve all PEVs (“charging” indicated in white).  As the feeder 
becomes constrained, all PEVs have reduced and random access to charging.  
Black indicates “not charging”. Bottom: Charging completed by PEV over the 
10-hour window. For this example, the overall charging achieved was 100% of 
available capacity without a priori scheduling and on average (across PEVs) 
80% of the charge requested. 

B. Case 2: Variable urgency, Variable capacity 
In Case 2, we consider the scenario where different users 

assign different urgency to the day’s charging.  A low-urgency 
customer may is willing to pay only the lowest rate for the 
received power and as a result be willing to take less than a full 
charge.  In contrast, the highest-urgency customer is always 
willing to take a charge regardless of price.  We implement this 
dichotomy through the automaton shown in Fig. 4 using the 
parameters presented in Table 2.  Using the previous capacity 
profile (Fig. 2), we find that the automaton approach indeed 
meets our objectives.  Specifically, we see (by the white band 
at the top of Fig. 5) those PEVs (ID No. 1-20) with highest 
urgency (p = 1) nearly all receive full charge. Through the 
completely uncoordinated accessing of the power distribution 
system, the approach manages to proportionally allocate the 
capacity by urgency as illustrated in Table 2. 

 
Fig. 4. Four-state automaton used for Case 2 study. p correspond to customer’s 
urgency. 

While the automaton used in Case 2 (Fig. 4) achieves the 
expected results, it has the downside of not effectively utilizing 
the available capacity in the system.  As many PEVs were set 
to have low urgency (e.g., 0.2 or 0.4) the frequency of their 
charge requests were such that the overall utilization of the 
available capacity was only ~60 % in this experiment.  As 
such, we are motivated to consider an alternative automaton 
that provides both priority and effective resource utilization. 
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Fig. 5. Top: Charge activity over the 10-hour window by PEV ID for Case 2 
where PEVs have different ‘urgency’.  Most urgent customers receive a power 
packet nearly every epoch to fully meet their need.  Less urgent customers (ID 
> 20) share the capacity.  Bottom: Charging completed by PEV over the 10-
hour window.  

TABLE II   SIMULATION PARAMETERS FOR PEV CHARGING 

PEV ID Urgency Power packets 
received 

Mean % 
completed 

Deviation 
% 

1-20 p = 1.0 118-120 99.5 % 0.6 % 
21-40 p = 0.8 88-104 81.5 % 3.6 % 
31-60 p = 0.6 67-74 58.1 % 3.0 % 
61-80 p = 0.4 38-57 40.6 % 4.7 % 
81-100 p = 0.2 17-29 19.7 % 3.2 % 

 

C. Case 3: Variable urgency, Sufficient capacity 
In Case 3, we consider perhaps a more realistic case where 

there is sufficient capacity in the system but there is a desire to 
prioritize the charging among users (again, by a customer’s 
willingness to pay for that level of service).  As seen in Case 2, 
that automaton enabled priority but not the efficient use of the 
capacity.  In this experiment, we allow even the lowest-urgency 
users to achieve a state where they will request a charge during 
an epoch with certainty (Fig. 6).  

 
Fig. 6. Four-state automaton used for Case 3 study.  By allowing low-urgency 
customers the ability to reach a p = 1 state improves overall utilization of the 
distribution system capacity. 

We repeat the aforementioned experiment with increasing 
the charge window to 12.5 hours.  This provides a capacity 
equal to the full PEV demand (i.e., 12,000 power packets).  Our 
results are seen in Fig. 7.   
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Fig. 7. Top: Charge activity over the 12.5-hour window by PEV ID.  Bottom: 
High-urgency PEVs received full 10-hour charge. 

Ideally, we would see PEVs No. 1-20 charge continuously 
for the first 10 hours (as they have the highest urgency) and 
then the remainder of the PEVs complete their charge in order 
of remaining urgency (i.e., 0.8 to 0.2).  However, that would 
require coordination between the charge manager and the 
individual PEV chargers that, as we noted at the onset, was not 
desirable.  From our results we do see from Fig. 7-top that all 
high-urgency PEVs complete their charge in about 11 hours.  
Furthermore, we see that all PEVs with urgency greater than 
0.6 receive effectively a full 10 hours of charging.  Only the 
lowest-urgency PEVs do not complete full charging even 
though there was capacity were it to be ideally managed.  
Overall in this experiment, the capacity was 96.2% utilized; 
again, without any specific coordination by the charge 
manager, unique identification of individual customers, etc. 

IV. CONCLUSION 
 Leveraging a recently proposed approach using 
probabilistic automatons [3, 7], this paper shows that it is 
feasible to manage the charging of plug-in electric vehicles in a 
residential distribution system using customer ‘urgency’ as a 
means to accommodate dynamic pricing models.  For 
demonstration purposes, the automatons presented herein have 
been of simplistic design to accommodate the trade-off 
between the needs of high-urgency customers and enabling 
low-urgency customers to take advantage of excess capacity.  
Based on our wireless sensor network work [8], we expect that 
through further analyses of the state probabilities will lead to 
improvements in this tradeoff.  Another advantage of the 
proposed approach is that it can easily be adapted to minimize 
the amount of bandwidth required for communications between 
the power grid and electric vehicles. This should make smart 
charging feasible in within the context of low bandwidth and 
high latency communications systems that are common in 
current Advanced Metering Infrastructure (AMI) systems. 
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