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Abstract—Identifying coherent sub-graphs in networks is im-
portant in many applications. In power systems, large systems
are divided into areas and zones to aid in planning and control
applications. But not every partitioning is equally good for
all applications; different applications have different goals, or
attributes, against which solutions should be evaluated. This
paper presents a hybrid method that combines a conventional
graph partitioning algorithm with an evolutionary algorithm to
partition a power network to optimize a multi-attribute objective
function based on electrical distances, cluster sizes, the number
of clusters, and cluster connectedness. Results for the IEEE RTS-
96 show that clusters produced by this method can be used to
identify buses with dynamically coherent voltage angles, without
the need for dynamic simulation. Application of the method to the
IEEE 118 bus and a 2383 bus case indicates that when a network
is well partitioned into zones, intra-zone transactions have less
impact on power flows outside of the zone; i.e., good partitioning
reduces loop flows. This property is particularly useful for power
system applications where ensuring deliverability is important,
such as transmission planning or determination of synchronous
reserve zones.

Index Terms—Network clustering, power network partitioning,
evolutionary algorithms, electrical distance.

I. INTRODUCTION

THE electric power infrastructure of the United States and
Canada is divided into four synchronous interconnec-

tions. Each of these is subsequently partitioned into Regional
Transmission Organizations (RTO) or Balancing Authorities
(BA). Balancing areas are frequently sub-divided into zones
for particular planning or control applications. These divi-
sions are used to reduce the computational and administrative
complexity associated with many planning and operations
applications. In most regions operational security analysis, re-
source adequacy assessments, zonal pricing, zone-based volt-
age control schemes, Area Control Error (ACE) calculations,
reserves scheduling, and capacity obligation determinations all
use areas or zones in one form or another. Some of these
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applications are reviewed in [1]–[4]. In some regions (PJM, for
example), the existing zonal boundaries result from historical
asset ownership, rather than the physical properties of the
network. This simplifies the network partitioning problem,
but raises questions regarding the quality of the planning,
operational and reliability applications that make use of zones.

The partitioning of data and networks has a long history in
the scientific literature. Kron and Happ [5]–[7] pioneered the
study of diakoptics, or ‘tearing’ to reduce the computational
requirements associated with analyzing large-scale systems.
The clustering of data enables a variety of applications in
statistics and artificial neural networks [8], [9]. Partitioning
methods can also be used to reveal complex community
structures in large-scale networks [10], [11].

Several approaches have been proposed for dividing power
networks into clusters. Clustering methods have been used
to define control areas for reactive power markets or zones
for voltage security assessment [12]–[14]. Kamwa et al. [15],
[16] employed clustering methods to evaluate the dynamic
vulnerability of a real system (Hydro-Quèbec). Several studies
used simulation methods to divide a power network, such as
the slow coherency approach [17] or disturbance simulation
approaches [15], [18], [19]. Li et al. [20] developed a hier-
archical clustering method that takes into account the active
and reactive power mismatch between areas. Recent studies
have also shown that network partitioning can facilitate the
integration of renewable sources [21], [22].

This paper describes an alternative approach, which defines
zones within a power system as collections of buses such that
buses within a zone are strongly connected and buses between
zones are weakly connected. Strongly-connected buses could
be treated as aggregated single buses for purposes of power
system analysis. We formalize this notion of strong and weak
connections using an electrical distance measure that relates
network topology to active-power sensitivities, and use this
measure in a multi-attribute network partitioning problem that
seeks to minimize distances between nodes within a zone,
and maximize distances between nodes in different zones. Our
electrical distance measure is primarily based on information
found in the system admittance (YBUS) matrix, thus avoiding
the need for extensive use of simulation data. We derive a
proper electrical distance measure from information contained
in the YBUS matrix. Our definition of electrical distance and
our multi-attribute partitioning approach are likely to be useful
for a number of network analysis and security applications
where identifying closely-tied buses is advantageous, including
identification of locational load-shedding to maintain secu-
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rity; wide-area monitoring problems such as synchrophasor
placement; and the definition of reserve requirements (such
as installed capacity or reactive reserve). The properties of
our multi-attribute network partitions would also be useful
for applications where ensuring deliverability is important,
including transmission planning and reserves scheduling. One
feature of our approach to clustering power networks is that the
zonal definitions are dependent on the network topology and
not on specific operating points. This has potential advantages
(in making the clustering method useful in a variety of appli-
cations) but also has its limits - since the electrical distance
measure is a function of network topology, our approach
is probably not well-suited for applications where system
dynamics are important.

This work improves substantially upon preliminary work
by the authors [4] by using an improved measure of electrical
distance (based on work in [23]), an improved representation
of solutions for the evolutionary computational algorithm, a re-
vised fitness function that considers both within- and between-
cluster distances, and results showing that good partitioning
results reduce extra-zonal power flows.

The remainder of this paper is organized as follows. Sec-
tion II illustrates how to apply the concept of electrical
distance to a power system clustering problem. Section III de-
scribes the individual metrics that compose the multi-attribute
optimization function. Section IV details the evolutionary
computational algorithm (EA) that we use in this work and
Sec. V summarizes the results obtained for two example power
networks. Finally, Sec. VI provides conclusions from this
work.

II. MEASURING ELECTRICAL DISTANCE

The general graph partitioning problem can be stated as
follows. Given a graph with n vertices V (|V | = n), a set of
edges linking V and some measure of distance between all
pairs of vertices, d(a, b), ∀(a, b) ∈ V , find a way to divide
V into approximately p sets {M1,M2, ...,Mp} (Mi ⊂ V ,
Mi ∩Mj = ∅), such that the distances between the sets are
maximized and the distances within the sets are minimized.
Different methods measure distances differently, or put more
relative emphasis on these two objectives, but all algorithms
use distances in some form or another. In some methods
(e.g., spectral clustering [24]), distances are inferred from the
network topology. In others (e.g., K-means [32]) distances are
used explicitly.

In this paper we explicitly evaluate the quality of solutions
using electrical distances. While electrical distances have been
used in a number of power systems problems [12], [13], [25],
[26], only in [25] (and our own previous work [4]) were they
explicitly used for network partitioning. Lagonotte et al. [25]
showed that the logarithmic voltage magnitude sensitivity in
a power grid can function as a proper distance metric1, under
some conditions.

1To qualify as a formal distance metric, each distance d(a, b) must be non-
negative, all self distances d(a, a) must be zero, and any combination of three
distances must satisfy the triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).

The distance metric used in this paper captures the marginal
impact of active-power transactions between nodes in a net-
work on voltage phase-angle (θ) differences between the
nodes. Specifically, our electrical distance metric ea,b estimates
the incremental change in phase angles that would result from
an incremental increase in active power flow from bus a to
bus b. This is done by computing the “resistance distance”
matrix [27] from the quadrant of the power flow Jacobian
corresponding to real power injections and voltage phase
angles (JPθ). If we assume that voltages are held nearly
constant by reactive power resources throughout a network
(∆V = 0), then the incremental change in nodal power
injections is given by:

∆P = JPθ∆θ.

Assuming that all branches in the network are symmetric (i.e.,
with nominal tap-changers and phase shifters), and neglecting
shunt capacitance in transmission lines, JPθ functions as a
symmetric Laplacian matrix describing the power network as
a weighted graph. Under the DC power flow assumptions JPθ

is the susceptance matrix B = %(YBUS). If we let J+
Pθ be the

pseudo-inverse [28] of JPθ , then each element (ea,b) of the
electrical “reactance” distance matrix (analogous to resistance
distance) is:

ea,b = (J+
Pθ)a,a − (J+

Pθ)a,b − (J+
Pθ)b,a + (J+

Pθ)b,b, (1)

which is conveniently independent of the reference bus chosen
for the network. This results in a distance matrix (E), for
which each element ea,b measures the incremental change in
phase angle difference between nodes a and b (∆θa − ∆θb)
given an incremental active power transaction between nodes a
and b. Since, if we assume that angle differences are small and
that voltages are nominal, incremental phase angle differences
and incremental reactive power dissipation are the same, E

also provides the reactive power dissipation that would result
from orthonormal current excitations.

In [23] we found that E, thus defined, satisfies the condi-
tions for a proper distance metric so long as all series branch
reactances are non-negative, and shunt capacitances are small.
Note that this definition differs from the simpler metric used
in [4], which was based on the simple inverse of the YBUS

matrix. Since the metric in [4] did not have zeros on the
diagonal, it can not be considered a formal distance metric;
however, numerical comparisons indicated that the two metrics
are strongly correlated.

It is important to note that electrical distances differ substan-
tially from topological distances (dij , the number of branches
that must be utilized to travel a topological path between Bus
i and Bus j) in power grids. The power systems literature
contains a number of examples where statistical clustering has
been employed using topological distance metrics (e.g., [1],
[2], [29]), but topological methods will not generally produce
cohesive clusters from an electrical perspective [4]. The par-
titioning method developed in this paper, based on electrical
distance, produces zones that are electrically cohesive, reduces
loop flows (transaction leakage) between zones, and in at least
one case identifies buses with dynamically coherent voltage
angles (see Sec. V).
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III. MEASURING THE QUALITY OF PARTITIONING

SOLUTIONS

In power system applications, objectives beyond inter- and
intra-cluster cohesiveness may be important. This section
describes metrics used to evaluate partitioning solutions. The
example metrics developed here were developed for problems
such as transmission planning or zonal scheduling, but also
illustrate how our approach can be used in combination with
a variety of attributes. The first two quality metrics are based
on electrical distances, the third and fourth measures relate to
cluster sizes, and the fifth index measures connectedness. For
consistency, each index is normalized to fit within the range
[0,1] with 1 indicating highest quality.

A. Electrical Cohesiveness Index (ECI)

From the electrical distance matrix E it is straightforward to
measure the total intra-cluster distance, for a given clustering
solution C,

ê(C) =
n∑

a=1

∑

b∈Ma

eab. (2)

where Ma is the set of buses that are in the same cluster
as bus a. ê(C) ranges between zero, when all nodes are in
separate clusters, and the sum of all elements in E when
all nodes are in a single, fully-connected cluster. For most
applications, high-quality clusters will have lower electrical
distances between nodes in each cluster (and thus high intra-
cluster cohesiveness).

The Electrical Cohesiveness Index (ECI) uses ê(C) to
measure the extent to which the buses within each cluster are
electrically proximate to other cluster members, as measured
by the extent to which phase angles within a cluster will
react in concert given a change in power injections within
the cluster.

ECI = 1−
ê(C)

êmax

= 1−

∑n
a=1

∑
b∈Ma

eab∑n
a=1

∑n
b=1

eab
. (3)

Equation (3) evaluates to one when all nodes are in separate
clusters (p = n), because every node is “perfectly” connected
to every other node in each cluster. Conversely, it evaluates to
zero when all nodes are in one cluster, reflecting the fact that
randomly chosen node pairs within very large clusters are, on
average, electrically distant from one another.

B. Between-Cluster Connectedness Index (BCCI)

ECI incorporates the within-cluster distances for a cluster-
ing solution, but does not consider the connections across
zonal boundaries. If a cluster boundary cuts through a low-
impedance connection, such as a very short transmission line
or a transformer, the effect on ECI would be insignificant.
Therefore, we use (4) to measure the strength of connections
between clusters.

h(C) =
n∑

a=1

∑

b/∈Ma

1

eab
(4)

The use of the inverse distance (1/eab) increases the contri-
bution of low-impedance connections to h. This measure is

similar to the graph “efficiency” measures proposed in [30]
and adapted for power grids in [31].

The Between-Cluster Connectedness Index (BCCI) mea-
sures the extent to which buses in different clusters are loosely
connected to one another, based on (4). Unlike ECI, BCCI
evaluates to one when all nodes are in the same cluster, be-
cause there are no cross-cluster connections. For an atomistic
solution (p = n), BCCI is zero because all nodes are strongly
connected to nodes outside of their clusters.

BCCI = 1−
h(C)

hmax

= 1−

∑n
a=1

∑
b/∈Ma

1/eab∑n
a=1

∑n
b=1
a "=b

1/eab

(5)

In (5), the numerator, h(C), is the sum of connection strengths
between clusters, while the denominator is the maximum
possible h(C).

C. Cluster Count Index (CCI)

The Cluster Count Index (CCI) measures the proximity of
the number of clusters in a given clustering solution, p, to
a predetermined ideal number of clusters, p∗. p∗ is a user-
defined parameter, based on the assumption that the user of
the method has some preference for the number of clusters
that result. We define CCI using the shape of the log-normal
probability density function with its mode set at p∗, as follows:

CCI = e
−(ln p−ln p∗)2

2σ2 , (6)

where σ = w ln(n). This shape is desirable because it gives
CCI= 1.0 when p = p∗, and approaches zero as p → n. The
parameter w sets the width of the fitness function relative to n;
that is, w is effectively a penalty factor, with larger values for
w increasing the penalty for p being far from p∗. The results
in this paper use w = 0.05.

D. Cluster Size Index (CSI)

The Cluster Size Index (CSI) evaluates the extent to which
the cluster sizes deviate from the ideal cluster sizes of s∗ =
n/p∗. To obtain CSI we measure the size of each cluster, and
then obtain a weighted average of cluster sizes:

s̄ =
n∑

i=1

si/n (7)

where si is the size of the cluster that node i resides in. Note
that by summing over each node, rather than over each cluster,
the result is a weighted average, rather than a simple average,
of cluster sizes. As with CCI, CSI follows the shape of the
log-normal distribution with the width parameter σ = w lnn:

CSI = e−
(ln s̄−ln s∗)2

2σ2 . (8)

E. Cluster Connectedness (CC)

By definition, a cluster is a set of nodes that are physically
linked to one another. All buses in a cluster, therefore, should
be reachable by traversing links within that cluster. To enforce
this definition we define Cluster Connectedness (CC) as a
binary measure that evaluates to zero when any cluster is not
fully connected, and one if all clusters are fully connected.
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F. Aggregate clustering fitness

To evaluate the aggregate quality (or fitness, f ) of a given
clustering solution, we use a multiplicative aggregate fitness
function, calculated as the weighted product of the five quality
measures above:

f = ECIα · BCCIβ · CCIγ · CSIζ · CC (9)

where {α, β, γ, ζ} ∈ [0, 1] are user-defined scalars that
define the relative importance of ECI , BCCI , CSI , CCI
respectively. Eq. (9) uses the product of the five measures
for three related reasons. First, we seek an aggregate fitness
function satisfying “preferential independence” of the five
individual quality metrics. Preferential independence is defined

by the condition ∂2f
∂a∂b (= 0 for any two values of distinct

individual quality metrics a and b; thus any multiplicative
fitness function would satisfy preferential independence (ad-
ditive fitness metrics, for example, will not satisfy preferential
independence). Using a fitness function that does not satisfy
preferential independence may produce clustering solutions
with high total fitness, but low scores for one or more quality
metrics. Second, a multiplicative form of the fitness function
gives f = 0 whenever any cluster is not fully connected.
Third, the interaction of the five individual clustering quality
metrics prevents our evolutionary algorithm (Sec. IV) from
pre-maturely converging on trivial solutions, such as creating
clusters with only one node.

IV. A HYBRID K-MEANS/EVOLUTIONARY ALGORITHM

FOR MULTI-ATTRIBUTE NETWORK PARTITIONING

Conventional partitioning algorithms such as spectral and
K-means approaches are computationally efficient, but are
not easily adapted to produce solutions that are optimal with
respect to objectives beyond those of maximizing between-
cluster distances or minimizing within-cluster distances. This
section presents a hybrid of the K-means algorithm [32] and
an evolutionary computational algorithm (EA), which can be
used to optimize with respect to a multi-attribute objective
function. The K-means algorithm is used to generate an initial
set of candidate solutions and the EA is used to improve the
initial solutions according to the fitness function (9).

A. K-Means algorithm implementation

K-means clustering uses a top-down, or divisive, approach
that begins with a complete network, divides the network into
clusters, and finally adjusts those clusters based upon some
criteria. The aim of the K-means algorithm is to divide the n
nodes in the network into K clusters so that the within-cluster
distances are minimized [32]. The algorithm starts by ran-
domly choosing K nodes within the network as centroids for
new clusters. The remaining nodes are subsequently assigned
to the closest of the K initial centroids. The K centroids
are then relocated to the node in each cluster that minimizes
the mean distance between the centroid and other nodes with
the cluster. Each node then calculates the distance between
itself and the K points, and reassigns itself to the cluster
associated with the nearest centroid. The method iterates until

the movement of the K centroid points falls below some
minimum threshold and a stable set of clusters is obtained.

In our implementation electrical distances were used for the
distance metric, and we chose K = p∗ as the (exogenously
determined) optimal number of clusters.

B. Evolutionary algorithm implementation

Genetic algorithms, a type of evolutionary algorithm (EA),
can be very effective at solving non-convex optimization prob-
lems, particularly when solutions can be represented as strings
of numbers, and the quality of solutions can be represented
using a single objective [33]. In this paper we adapted the
standard genetic algorithm (henceforth referred to as a evo-
lutionary algorithm, EA) to the problem of finding clustering
solutions that maximize the fitness function in Eq. (9). The
following sections describe the methods used to represent
solutions in the EA, to generate the initial population of
solutions, and to implement selection, crossover and mutation.

1) Initial population: The initial populations for the EA
were produced using a combination of random clusters and
clusters generated from the K-means algorithm. Random clus-
ters were generated by selecting random nodes as cluster
centroids and iteratively expanding the clusters to encompass
neighboring nodes until each node is assigned to exactly one
cluster. Both the random and K-means initial solutions were
selected to have a CSI score greater than 0.9 in order to
produce a balanced set of initial conditions with respect to
cluster sizes. The random solutions provided the EA with
a wide variety of different solutions, whereas the K-means
solutions provided a group of good solutions to improve upon.

2) Representation of solutions: In a standard genetic al-
gorithm (a type of evolutionary algorithm) each solution is
represented as a string of (typically binary) numbers. This
string is known as the genotype, since it encodes the actual
solution (the phenotype) into an abstract representation. In
our clustering EA, each solution is represented as a string
of ng = n integers (g = [g1 . . . gn]), where n is the number
of nodes in the network (see Fig. 1). In this representation,
each gi is an index between 0 and the number of topological
neighbors for Node i (mi, which is equivalent to the number of
buses adjacent to Bus i). When gi = 1, Node i is located in the
same cluster as its first neighbor; when gi = 2, it is located in
the same cluster as its second topological neighbor; etc. When
gi = 0, Node i is not necessarily placed in the same cluster
as any other node, however it may end up clustered with one
or more of its neighbors (e.g., Node k with connection gk)
if gk indicates a connection to Node i. Every solution within
the bounds 0 ≤ gi ≤ mi ∀i is a valid solution to the cluster
problem (with a CC score of 1, Sec. III-E). A change to a
single byte can divide a cluster into two clusters, or merge it
with a neighboring cluster. This flexibility increases the power
of mutation and crossover operations, which are the primary
methods for search in a genetic algorithm (see Sec. IV-B3).

In order to evaluate the benefits of encoding the solutions
with the integer genotype described above, we designed an
experiment that compares the integer approach with the binary
representation that was used in [4]. The binary genotype
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Figure 1. Illustration of three solutions (phenotypes) to a four-node clustering
problem, using the integer genotype described in Sec. IV-B2. Each byte gi in
the genotype indicates which of Node i’s neighbors are in the same cluster
as Node i. Each Node numbers its neighbors sequentially, such that in the
above, Node 1’s first neighbor (gi = 1) is Node 2 and its second neighbor
(gi = 2) is Node 3.

consisted of a string of ng = r bits (g = [g1 . . . gr]), where r is
the number of branches in the network. For a given branch (i),
the state gi = 1 indicates that the endpoint buses for branch i
are located in the same cluster. The state gi = 0 indicates the
location of a potential boundary. The experiment consisted
of applying the clustering algorithm to the test system in
Sec. V-D with a flat start (all the initial solutions are random)
and a predetermined maximum number of generations. We
then measured the fitness of the solutions obtained when using
the binary genotype versus using the integer genotype, while
keeping the rest of parameters constant for both runs. Figure 2
illustrates the fitness evolution for both representations given
an identical set of initial solutions.

Figure 2. The fitness of the EA-produced partitioning solutions, by genera-
tion, for two alternate representation methods.

The results clearly show that the EA with the integer
representation achieves substantially better solutions in far
fewer generations. This is the case because, in the integer
representation, a smaller number of mutations are required
to produce substantially different solutions. In the binary
representation, in order to separate a given subgraph into two
subgraphs, every bit along a cut-set of that subgraph would
need to mutate from one to zero. In the integer representation
a single integer mutation can separate a subgraph into two
subgraphs. In the integer representation, distinct solutions are
thus a smaller distance from one another, which dramatically
improves the power of crossover and mutation.

3) Selection, recombination and mutation: Our EA selected
individuals to combine (crossover) and preserve between gen-
erations (elitism) based on fitness scores from (9). Parents

for crossover operations are selected using the standard tour-
nament selection method without replacement [34], [35], in
which the selection of each individual depends upon a fitness
comparison with a given number (tournament size) of other
fitness scores from different individuals. In each generation
the EA generates a set of new individuals equal to 80% of
the population through crossover. The new individuals replace
existing individuals probabilistically, using the roulette wheel
method. The crossover process is summarized as follows:

1) Select two parents using a tournament algorithm without
replacement that compares the fitness scores.

2) Choose a single random point in the genotype pair at
which both parents are split (single-point crossover).

3) Create a new individual with the vector head of one
parent and the vector tail of the second.

4) Replace an individual in the population with the new
individual, with replacement probabilities proportional
to fitness.

In addition, the top three individuals are retained without
modification at each generation (elitism). For the rest of the
population, mutation occurs at the end of each generation.
When a byte mutates it is randomly reset to an integer in
the feasible set gi,new ∈ {0, 1, . . . ,mi}. We use a mutation
probability of 1/n, so that we get approximately one mutation
per individual per generation.

C. Choosing weights for multiple objectives

The fitness function (9) uses a multiplicative form in order
to ensure that the EA penalizes solutions that have low scores
in any of the four dimensions. However, in some applications
some of the objectives are less important than others. In
order to adjust the weights in (9), we specifically tested a
variety of solutions for a specific application that requires
zones (reducing loop flows, for example, Sec. V-A), and used
multiple-regression to determine the relative importance of the
four objectives to the desired outcome. Sec. V-D discusses the
application of this approach to a relatively large system.

V. RESULTS

This section illustrates the proposed partitioning algorithm
using three different test systems, the relatively small IEEE-
RTS-96 and IEEE-118 test systems and a larger model that
represents the power grid in Poland.

A. Measuring transaction leakage (loop flow)

A common application for zonal analysis in power system
planning and operations is monitoring the impact of transac-
tions between distant locations. In transmission planning appli-
cations, for example, it is desirable that intra-zonal transactions
do not significantly affect currents, voltages or power flows
outside of the zone. In reserves scheduling, the importance
of deliverability of reserves has recently been emphasized,
i.e. reserves themselves should not face curtailment because
of transmission constraints and the dispatch of reserves should
not cause additional congestion elsewhere in the system [36].
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In this section we test the hypothesis that when zones are de-
signed to have higher BCCI and ECI scores, while controlling
for the number and size of clusters (CCI, CSI), intra-zonal
real power transactions result in less current flow changes on
branches outside of the zone. If Bz is the set of buses in
zone z, Eq. (10) provides a measure of average impact of
transactions within zone z on currents in branch m in the
network.

Tz(m) =

∑
∀a,b∈Bz

max(Im(a → b)− Im(0), 0)

|Bz |(|Bz|− 1)
(10)

where Im(0) is the current magnitude (in per unit) on branch
m before the transaction, and Im(a → b) is the (p.u.) current
on the same branch after adding an additional 1 MW (0.01
p.u.) of demand at bus b and allowing a “slack bus” at bus a
to meet this additional demand. We use the term Tz to refer
to the average Tz(m) over all branches m that are outsize
of zone z, and Tz to be the average Tz over all zones in a
given solution to the clustering problem. The currents Im(0)
and Im(a → b) were calculated using a standard Newton-
Raphson ac power flow. Transaction leakage thus measures
the average amount that currents (in per unit) change outside
of a zone, given transactions within a zone. Note that because
we averaged over a large number of branches, many of which
are far from a particular zone, and because the numbers are
expressed in per unit, the numbers are small (on the order
of 10−5 to 10−4 per unit). Because transaction leakage is in
some contexts referred to as “loop flow”, this paper uses the
two terms interchangeably.

B. Test system: IEEE-RTS-96

The IEEE reliability test system 1996 constitutes one of
the most commonly utilized benchmarks for power system
analysis [37]. It is composed by 73 buses, 120 transmission
lines and 99 generators.

To illustrate how the use of our clustering method (fitness
function and evolutionary algorithm) could improve the per-
formance of planning applications, we partition the IEEE-
RTS-96 bus test case into three zones, and compare the
quantity of transaction leakage to the fitness scores f . We
make this comparison for 100 randomly generated divisions
of the IEEE-RTS-96 case into three zones (using the random
centroid method) and the best solution that resulted from our
evolutionary algorithm. To avoid distortions that might result
from unbalanced cluster sizes, we compared only random
solutions with a CSI score of 0.9 or higher.

The results shown in Fig. 3 indicate a strong, and statisti-
cally significant, negative correlation between f and Tz (see
Fig. 3). We take this as strong evidence in support of our
hypothesis that defining network partitions with high electrical
cohesiveness reduces transaction leakage. Note that the values
of Tz computed are small, largely because the size of the
initial transaction was small (0.01 p.u.) and because the results
show an average over all transmission lines outsize of the zone
(many of which are quite far from the zone, and thus will have
very small numbers for Tz(m) from Eq. (10).

Additionally, the solution achieved by the EA (marked with
a triangle in Fig. 3) yields identical clusters to those found

0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.5

1

1.5

2

2.5

3

3.5

4 x 10−4

f = 0.79 · 0.52 · 1 · 1 →

f = ECI · BCCI · CCI · CSI

T
z

Figure 3. Scatter plot showing clustering quality (f ) and the amount of loop
flow (Tz) for random clustering solutions (×) and a solution generated by
the EA (#) for the IEEE-RTS-96 network and 3 clusters.

Table I
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI IN THE RTS-96 CASE.

Bk
1 T stat. P-val

intercept -12.3 -42.6 < 10−3

ECI -6.7 -3.59 < 10−3

BCCI -2.6 -2.82 < 10−2

CSI 0.5 0.33 0.74678

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) + B3 ln(CSI).

by the dynamic simulation method proposed in [15]. This
provides evidence that using electrical distances for partition-
ing can identify generators that are likely to be dynamically
coherent.

C. Test system: IEEE-118

The IEEE-118 bus test case consists of 118 buses and 186
branches and comes from a reduced model of the Midwestern
US power grid in 1962 [38]. We follow the same procedure
described in Sec. V-B to initialize the EA and obtained a 3-
cluster partition of the IEEE-118 test case that substantially
improves the multi-objective goal with respect to the random
solutions. Figure 4 and Table II further support the hypothesis
that partitions with high electrical cohesiveness reduce loop
flows.

In order to test the hypothesis that our new distance metric
from (1) better correlates with T̄z than the metric in [4], we
generated 100 random divisions of the 118 bus case into 3
clusters, and evaluated the four metrics from (9) (neglecting
CC, since all solutions had CC = 1) using the old and new
distance metrics. Linear regression was used (as in Table II)
to predict Tz from the four metrics. The model using distance
as defined in (1) had an R2 value of 0.75, vs. R2 = 0.61 for
the old distance measure. Note that the predictiveness would
further decrease if BCCI were not included in the regression,
as was the case in [4]. We interpret this as evidence supporting
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Figure 4. Scatter plot showing clustering quality (f ) and the amount of loop
flow (Tz) for random clustering solutions (×) and a solution generated by
the EA (#) for the IEEE-118 network and 3 clusters.

Table II
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI IN THE IEEE-118 CASE.

Bk
1 T stat. P-val

intercept -13.5 -52.3 < 10−3

ECI 1.01 0.6 0.5506
BCCI -6.08 -8.54 < 10−3

CSI -5.94 -4.37 < 10−3

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) +B3 ln(CSI).

the hypothesis that the new measure is superior in terms of
predicting transaction leakage.

D. Test system: Poland, case2383wp

To test this algorithm on a realistic, relatively large power
system, we use data from the Poland grid, corresponding to
a snapshot of the grid for a winter peak load profile [39].
After collapsing leaf-nodes2 (which will cluster within the
same set as their immediate upstream neighbors) the network
comprises 1733 buses and 2240 transmission lines. The fol-
lowing algorithm summarizes the application of the method
proposed in Sec. IV to this specific case and illustrates how to
manage multiple objectives, to produce partitioning solutions
for a large system.

1) Merge the leaf-nodes (nodes with exactly 1 other con-

nection) with their immediately connected neighbor.

2) Generate an initial population of random and K-means

clustering solutions for calibration. The total number of
calibration solutions in this example is 40 (20 random
+ 20 K-means).

3) Choose the fitness function coefficients according to the

relative importance of the metrics with respect to the

specific application. In this case, we fit a linear model
for Tk and decide that given the strong (anti-)correlation
with BCCI , an appropriate weighting would be f =

2Leaf-nodes are those that only have one connection.

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
2

2.5

3

3.5

4

4.5

5 x 10−5

← a, f = 0.80 · 0.36 · 1 · 0.92

← b

f = 0.82 · 0.36 · 1 · 0.96

× : Random solut ions

© : K-mean solut ions

# : GA solut ions

f = ECI · BCCI · CCI · CSI

T
z

Figure 5. Scatter plot showing clustering quality f and the amount of loop
flow (Tz) for the Polish power grid, with p∗ = 5. The red-shadowed symbols
are Pareto optimal with respect to Tz and f . Two of these optimal solutions
{a, b} are further illustrated in Fig. 6.

Table III
LINEAR REGRESSION RESULTS FOR Tz AS A FUNCTION OF ECI , BCCI

AND CSI FOR THE POLISH CASE (INITIAL SOLUTIONS).

Bk
1 T stat. P-val

intercept -15.8 -27.4 < 10−4

ECI 11.9 4.88 < 10−4

BCCI -7.1 -10.55 < 10−4

CSI -8.7 -6.22 < 10−4

1 The coefficients Bk correspond to: ln(Tk) = ln(intercept) +
B1 ln(ECI) +B2 ln(BCCI) + B3 ln(CSI).

ECI0.8·BCCI1·CCI1·CSI0.8 (see Table III). Because
the total number of clusters is an external constraint
usually given by a client (e.g. a regional transmission
organization), this combination of coefficients also main-
tains a strong selection preference toward CCI .

4) Generate the EA initial population. In this case we
construct an initial population of 400 individuals, com-
bining the 40 calibration solutions from Step 2 and 360
additional random solutions.

5) Run the EA. We evolved the set of solutions according
to the parameters described above and saved a set of
273 improved solutions over 6,000 generations.

6) Calculate the Pareto set of solutions from all the EA

solutions. We further refined the results by choosing
the 33 non-dominated solutions with respect to the
individual metrics (represented by triangle markers in
Fig. 5).

7) Calculate Tk on the reduced set of solutions and se-

lect a final partition that is optimal with respect to

the weighted multiple objectives. (See Fig. 5, the red-
shadowed symbols compose the Pareto optimal set from
within the full aggregate set of 73 solutions)

The top panel of Fig. 6 illustrates solution ‘a’ in Fig. 5,
which was generated from the K-means algorithm and has
small average loop flow (Tz). However, the balance of cluster
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Figure 6. Two partitions of the Polish power grid that are Pareto optimal
with respect to f and Tz . The fitness scores of these solutions are fa = 0.80·
0.36·1·0.92 and fb = 0.82·0.36·1·0.96 for f = ECI ·BCCI ·CCI ·CSI .

sizes (CSI) in solution ‘a’ is substantially worse than that of
the EA solution (‘b’ in Fig. 5). For a small increase in Tz,
the most fit EA solution (solution ‘b’) is optimal in a Pareto
sense, and substantially superior in terms of total fitness.

In order to compare our method with spectral clustering
approaches [40] we generated and evaluated a clustering
solution based on the Fiedler Vector [41] for this test case. The
loop flow evaluation for this solution yielded Tz = 2.26×10−5

which makes it comparable to a good K-means solution.
The overall fitness score of this solution, from Eq. (9), was
f = 0.259. While this solution is competitive with the K-
means approach, it would not qualify for the Pareto front in
Fig. 5.

VI. CONCLUSIONS

This paper presents a multi-attribute, hybrid method for
dividing a power system into electrically coherent partitions
(zones), using electrical distances. Using a K-means algorithm
in combination with an evolutionary computational algorithm
produces solutions that balance several measures of quality
(attributes). Our EA includes a novel integer representation

that allows for efficient exploration of the search space. The
method is not designed to optimize zonal partitions for a
specific application. Rather, this paper presents a general
approach to the power network partitioning problem whose
solutions have demonstrably advantageous properties for some
classes of power system applications, and whose formulation
could be tailored to specific operational or planning problems.
An application of the method to the 76 bus IEEE Reliability
Test Case produced a partitioning solution that groups buses
that respond coherently to dynamic disturbances. A study of
the extent to which intra-zonal transactions impact extra-zonal
currents (loop flows) in two test cases (the IEEE 118 bus and
the Polish network), showed that clustering based on electrical
distances can reduce unwanted loop flows. This property
of our clustering solutions seems advantageous for system
security applications, such as location-specific load-shedding.
The localized (intra-cluster) response to active-power perturba-
tions also suggests that electrical-distance clustering could be
utilized in wide-area monitoring schemes, or cascading failure
analysis [42].

The general results in this paper suggest opportunities
for future research on electrical-distance based partitioning
schemes for particular applications. For example, transmission
topology reconfiguration problems, such as transmission ex-
pansion planning and optimal transmission switching, are often
intractable on large power systems [43], [44]. By using zonal
definitions that minimize loop flows, the inter-zonal effects
of topology modifications are limited and topology reconfig-
uration problems may be applied to distinct zones/areas with
greater accuracy.
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