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Abstract—Critical slowing down (CSD) is the phenomenon in

which a system recovers more slowly from small perturbations.

CSD, as evidenced by increasing signal variance and autocorrela-

tion, has been observed in many dynamical systems approaching

a critical transition, and thus can be a useful signal of proximity

to transition. In this paper, we derive autocorrelation functions

for the state variables of a stochastic single machine infinite

bus system (SMIB). The results show that both autocorrelation

and variance increase as this system approaches a saddle-node

bifurcation. The autocorrelation functions help to explain why

CSD can be used as an indicator of proximity to criticality in

power systems revealing, for example, how nonlinearity in the

SMIB system causes these signs to appear.

I. INTRODUCTION

Insufficient stability monitoring and situational awareness
have been identified as critical contributors to recent large
power system failures, such as August 14, 2003 [1] and
Sept. 8, 2011 [2]. Recent deployment of phasor measure-
ment units (PMU) produce large quantities of time-series
data, which open tremendous opportunities to improve power
system stability monitoring and control. However doing so
requires algorithms and methods that transform these data into
useful information about power system stability.

To address this problem, this paper draws from research
on critical transitions in stochastic dynamical systems. The
statistics of time-series data change notably in most stochastic
dynamical systems as they approach critical transitions; sys-
tems are more easily perturbed from equilibrium, and take
longer to return after being displaced [3], [4]. Collectively,
this phenomenon is known as Critical Slowing Down (CSD),
and is most easily observed by testing for autocorrelation and
variance in time-series data. Increasing autocorrelation and
variance have been shown to indicate proximity to critical
transitions in climate models [5], ecosystems [6] and the
human brain [7]. In prior work by the authors [8], CSD has
been shown to be an early warning sign of critical transition
in power systems. A deep understanding of CSD in power
systems could lead to new tools for wide area measurement
and control.

In many systems with critical transitions, slow-varying
continuous parameters cause gradual trends in state variables,
which generally move the system closer to, or further from,

unstable operating points. Simultaneously, random perturba-
tions cause fast changes. As a result, such systems have two
time scales: fast and slow. In power systems, loads have
slow predictable trends, such as load ramps in the morning
hours, and fast stochastic ones, such as random load switching.
Whereas conventional generators tend to vary slowly, intermit-
tent renewable generation, such as PV on a partly cloudy day,
can have fast stochastic changes. Because of this, the math-
ematical framework of fast-slow systems [9] and stochastic
differential equations [10] can help to explain phenomena in
these systems, such as the manner in which autocorrelation
and variance increase with proximity to critical points. In [9],
the variance and autocorrelation of state variables for several
prototypical fast-slow systems is calculated using the Fokker-
Planck approach and numerical simulations.

Estimating the proximity of a power system to a particular
critical transition (e.g., voltage collapse) has been the focus of
a number of papers in the power systems literature. References
[11]-[14] present methods to measure the distance between an
operating condition and voltage collapse with respect to slow-
moving state variables, such as load. While these methods
provide useful information about system stability, they require
accurate network models all of which contain some error.

Another approach to estimating the distance to critical
transitions is to identify statistical patterns in the response of
a system to stochastic forcing, such as fluctuations in load,
or production from renewable energy sources. To this end, a
growing number of papers study power system stability using
stochastic models [15]-[18]. Reference [15] models power
systems using Stochastic Differential Equations (SDEs) and
solves the SDEs using Itô calculus to develop a measure of
voltage security. In [10], the Euler and Milstein methods for
numerically solving SDEs are used to assess transient stability
in power systems, given fluctuating loads and random faults.
Reference [18] uses the time evolution of the probability
density function for state variables in a Single Machine Infinite
Bus (SMIB) system to show how random load fluctuations
affect system stability.

The results above clearly show that power system stability
is affected by noise in the system. However, more work is
needed to identify useful statistical trends in high sample-rate
measurements from power systems. Results from the literature
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on CSD suggest that the combination of both increased auto-
correlation and variance in time-series data are needed in order
to gain insight into the proximity to critical transitions from
data. Reference [8] provides empirical evidence of increasing
autocorrelation and variance for an SMIB model and the 9-
bus test case. Reference [19] shows that voltage variance at
the end of a distribution feeder increases as it approaches
voltage collapse. However, these results do not provide insight
into autocorrelation. To our knowledge, only [20] derives an
approximate analytical autocorrelation function (from which
either autocorrelation or variance can be found) for state vari-
ables in a power system model. However, the autocorrelation
function in [20] is limited to the operating regime very close
to the threshold of instability. In this paper, we derive exact
autocorrelation functions for the state variables of an SMIB
system. The results provide insight into the conditions under
which autocorrelation and variance signal proximity to critical
transitions in power systems. We use the results to explain why
CSD occurs in power systems, and describe conditions under
which autocorrelation and variance signal proximity to critical
transitions.

The rest of the paper is organized as follows. Section II pro-
vides a brief review of SDEs and solution methods. Section III
describes our model, analytical and numerical results. Section
IV discusses the implications for power system operations, and
Sec. V summarizes the results and contributions of this paper.

II. A BRIEF REVIEW OF STOCHASTIC DIFFERENTIAL
EQUATIONS

There are two different approaches to modeling and solv-
ing Stochastic Differential Equations (SDEs): the Itô and
the Stratonovich interpretations. In the Itô interpretation
[21], noise is considered to be uncorrelated, whereas in the
Stratonovich interpretation [22] noise has finite, albeit very
small, correlation time [23]. Itô calculus is often used in
discrete systems, such as finance, though a few papers have
applied the Itô approach to power systems [15], [10]. On the
other hand, the Stratonovich method is often used in contin-
uous physical systems where noise is band-limited [24]. The
Stratonovich interpretation also facilitates the use of ordinary
calculus, which is not possible under the Itô interpretation.

In this paper we organize our model to use the multi-
variate Ornstein-Uhlenbeck stochastic differential equation, as
described in [23]:

dZ (t) = AZ (t) dt+BdW (t) (1)

where Z (t) is the vector of the state variables, A and B
are constant matrices, and W (t) represents an n-dimensional
Wiener process. The increments of the Wiener process
(dW (t)) are independent, normally distributed random vari-
ables, such that:

W (ti)�W (ti�1) ⇠ N (0, ti � ti�1) (2)

Because B is a constant matrix in this paper, the Itô and
Stratonovich interpretations result in the same solution [24].

We will follow the Stratonovich interpretation because it
allows for the use of ordinary calculus.

III. STOCHASTIC SINGLE MACHINE INFINITE BUS
SYSTEM

Analysis of small power system models can be very helpful
for understanding the concepts of power system stability. The
single machine infinite bus system has long been used for this
purpose. Reference [25] explores the small signal stability of
synchronous machines using the SMIB system. In [26], Wang
et al. use a novel control technique to improve the transient
stability and voltage regulation of a SMIB system. In the recent
literature, there is increasing interest in stochastic analysis of
power systems, in part due to the increasing integration of
variable renewable energy sources. A few of these papers
use stochastic SMIB models. In [27], it is suggested that
increasing noise in the stochastic SMIB system can make
the system unstable and induce chaotic behavior. Reference
[18] (mentioned in Sec. I) also studied stability in a stochastic
SMIB system.

In this section, we derive autocorrelation functions of the
state variables for a stochastic SMIB system. Analysis of these
functions provides analytical evidence for, and insight into,
CSD in a small power system.

A. Stochastic SMIB System Model

Fig. 1 shows an stochastic SMIB system. Equation (3),
which combines the mechanical swing equation and the elec-
trical power produced by the generator, fully describes the
dynamics of this system:

M ¨� +D ˙� +
(1 + ⌘)E0

a

X
sin (�) = Pm (3)

where (⌘ ⇠ N (0, 0.01)) is a white Gaussian random variable
added to the voltage magnitude of the infinite bus to account
for the noise in the system, M and D are the combined inertia
constant and damping coefficient of the generator and turbine,
and E

0

a and � are the transient emf and the rotor angle of
the generator. The rotor angle is the angle difference between
the rotor position and a synchronously rotating reference
axis. The reactance X is the sum of the generator transient
reactance (X

0

d) and the line reactance (Xl), and Pm is the
input mechanical power. The third term in the left-hand side
of (3) is the generator’s electrical power (Pg). In order to
test the system with varying amounts of stress, we solved
the system for different equilibria, considering that generator’s
mechanical and electrical power are equal at each equilibrium:

Pm = Pg0 =

E
0

a

X
sin (�0) (4)

B. Autocorrelation and Variance of the Differential Variables

In order to solve (3) analytically, we linearized it around
the equilibrium point using the first-order Taylor expansion:

�

¨� +
D

M
�

˙� +
E0

a

MX
cos (�0)�� = � ⌘

M
Pg0 (5)
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Fig. 1. Stochastic single machine infinite bus system model used in sec. III.

where �0 is the value of the rotor angle at the equilibrium, and
�� is the deviation of the rotor angle from its mean value.
Equation (6) is the standard form of (5), which is known as
the damped harmonic oscillator equation with noisy forcing:

¨Z + 2� ˙Z + !2
0Z = �f⌘ (6)

for which the following equalities hold:

Z = ��; � =

D

2M
;!0 =

r
E0

a cos �0
MX

; f =

Pg0

M
(7)

Equalities in (7) show that f increases with �0 while !0

decreases with �0.
Rewriting (6) as (1) results in a set of two first order SDEs.

Here, Z (t) =
⇥
�� �

˙�
⇤T

where �

˙� is the deviation of the
generator speed from its mean value, and W (t) is a 2-variable
Wiener process. The matrices A and B in (1) are as follows:

A =


0 1

�!2
0 �2�

�
, B =


0 0

0 �f

�
(8)

At �0 = ⇡/2, !0 is equal to zero, so one of the eigenvalues of
matrix A becomes zero. As a result, the system experiences a
saddle-node bifurcation.

Following the method in [23], the solution of (6) is as
follows:

�� (t) = f ·
ˆ t

�1
[exp (� (t0 � t)) ⌘ (t0) (9)

· sin (!
0
(t0 � t))

!0 ]dt0

�

˙� (t) = f ·
ˆ t

�1
[exp (� (t0 � t)) ⌘ (t0) (10)

·� sin (!0
(t0 � t) + �)!0

!0 ]dt0

where !0
=

p
!2
0 � �2 is the frequency of the underdamped

harmonic oscillator, and � = arctan(!0/�). Note that !0 and
� decrease with �0. Using (9) and (10), we calculated the
stationary variances and autocorrelations of ��, �

˙�. Note
that the eigenvalues of A have negative real part before the
bifurcation point since � > 0. The variances are as follows:

�2
�� =

f2�2
⌘

4�!2
0

(11)

�2
��̇

=

f2�2
⌘

4�
(12)

If � < !0, which holds until �0 ⇡ ⇡
2 in our system, the

autocorrelation functions for �� and �

˙� are as follows:

E [�� (t)�� (s)] = exp (���t)
f2

4�!0!0
(13)

· sin (!0
�t+ �)�2

⌘

E
h
�

˙� (t)� ˙� (s)
i

= exp (���t)
�f2!0

4�!0 (14)

· sin (!0
�t� �)�2

⌘

where t and s are two different times such that t > s, and
�t = t� s.

C. Numerical example

Using (11)-(14), we calculated the variances and autocorre-
lations of ��, � ˙� at different equilibria; see Figs. 2, 3. Here,
the bifurcation parameter is the input mechanical power Pm.
The parameters are given below:

E0
a = 1.2pu, D = 0.03 pu

rad/s , H = 4

MW.s
MV A , X 0

d = 0.15pu,

Xl = 0.1pu,!s = 2⇡ · 60

Note that M = 2H/!s, where H is the inertia constant, and
!s is the rated speed in rad/s.

Fig. 4 shows the autocorrelation function of �� for different
values of Pm. It shows that choosing �t close to 1/4 of
the smallest period of the function allows one to observe the
monotonic increase of the autocorrelation as Pm increases. For
larger values of �t, the increase of the autocorrelation may not
be observed since the frequency of the function’s oscillations
varies with Pm. For smaller values of �t, the increase of
the autocorrelation is less noticeable since the function curves
become closer to each other as the time lag approaches zero.
We chose �t = 0.1s.

In Figs. 2 and 3, the analytical and numerical results are
compared with each other. In order to calculate the numerical
results, (3) was solved using a fixed-step trapezoidal ordinary
differential equation solver. At each time step, ⌘ (t) changes
according to its normal probability density function. The
minimum period of oscillations in this system (T = 2⇡/!0

) is
0.4 sec. We chose the integration step size to be 0.01 sec which
is much shorter than the period of the shortest oscillation. For
each equilibrium, we integrated (6) 100 times; the average
results are shown in the plots. The numerical results are shown
for the range of the bifurcation parameter values for which the
numerical solutions were stable. The ratio q4/q1 in Figs. 2 and
3 is equal to the value of the variance or autocorrelation for
Pm = 4pu divided by the corresponding value for Pm = 1pu.

Fig. 2 shows that the variances of �� and �

˙� increase
with Pm, and seem to be good indicators of proximity to the
bifurcation. However, the growth rates of the two variances
are different. The difference becomes more significant near
the bifurcation where the variance of �� increases much faster
than the variance of � ˙�. This is caused by the term !2

0 in the
denominator of the expression for the variance of �� in (11)
. In Fig. 3, the autocorrelations of �� and �

˙� increase with
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Fig. 2. Variance of ��,��̇ for different mechanical power (Pm) values.
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Fig. 3. Autocorrelation of ��,��̇ for different mechanical power (Pm)
values. The autocorrelation values are normalized by dividing by the variances
of the variables.

Pm. Similar to the variances, the autocorrelations are good
indicators of proximity to the bifurcation as well.

D. Autocorrelation and Variance of the Algebraic Variables

In order to calculate the variance and autocorrelation of the
algebraic variables (the generator’s terminal voltage magnitude
and angle), we wrote KCL at the generator’s terminal:

E0
ae

i� � Vge
i✓g

jX 0
d

+

1 + ⌘ � Vge
i✓g

jXl
= 0 (15)

Separating the real and imaginary parts in (15), gives the
following:

Vg sin (✓g) = ↵E
0

a sin (�) (16)
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Fig. 4. Autocorrelation function of ��. �t = 0.1 is close to 1/4 of the
smallest period of the function (for different values of Pm).

Vg cos (✓g) = ↵E
0

a cos (�) (17)
+(1 + ⌘) (1� ↵)

where ↵ = Xl/(Xl +X
0

d). Linearizing (16) and (17) around
the equilibrium results in �Vg and �✓g as linear combinations
of �� and ⌘:

�Vg = ↵E
0

a sin (✓g0 � �0)�� (18)
+(1� ↵) cos (✓g0) ⌘

�✓g = (↵E
0

a cos (✓g0 � �0)�� (19)
� (1� ↵) sin (✓g0) ⌘)/Vg0

Then, we rewrote (18) and (19) as follows:

�Vg = C1�� + C2⌘ (20)
�✓g = C3�� + C4⌘ (21)

where C1, C2, C3, C4 are constants that replace the coefficients
in (18) and (19). Then, the autocorrelation of �Vg is as follows
(t > s):

E [�Vg (t)�Vg (s)] = C2
1 · E [�� (t)�� (s)]

+C1C2·E [�� (t) ⌘ (s)] (22)

In deriving (22), we observed that E [�� (s) ⌘ (t)] = 0 since
the system is causal. Also, E [⌘ (t) ⌘ (s)] = 0 because ⌘ is a
white random variable. Similarly,

E [�✓g (t)�✓g (s)] = C2
3 · E [�� (t)�� (s)] (23)

+C3C4 · E [�� (t) ⌘ (s)]

Equations (22), (23) show that in order to calculate the
autocorrelation of �Vg and �✓g , it is necessary to calculate
E [�� (t) ⌘ (s)]. We calculated E [�� (t) ⌘ (s)] using (9):

E [�� (t) ⌘ (s)] = � exp (���t) · f

!0 (24)

· sin (!0
�t)�2

⌘

We can infer from (24) that cov (��, ⌘) = 0. As a result,
using (11), (18) and (19), the variances of �Vg and �✓g are
as follows:

�2
�Vg

=

✓
C2

1f
2

4�!2
0

+ C2
2

◆
�2
⌘ (25)

�2
�✓g =

✓
C2

3f
2

4�!2
0

+ C2
4

◆
�2
⌘ (26)

Utilizing (13), (22), (23) and (24), we calculated the autocor-
relation of �Vg :

E [�Vg (t)�Vg (s)] = exp (���t)
C1f

4!0!0�
· (27)

q
C1f (C1f � 8C2�2

) + (4C2!0�)
2

· sin
�
!0
�t+ �vg

�
· �2

⌘

where �vg = arctan(

C1f!
0

C1f��4C2�!2
0
). The autocorrelation func-

tion of �✓g is similar to (27) (C1 and C2 are replaced by C3

and C4).



Figs. 5,6 show the variance and autocorrelation of �Vg,�✓g
at different equilibria for this system. In Fig. 5, although the
variances of both variables increase with Pm, the increase
of the variance of �✓g is much more significant. Also,
the variance of �Vg does not increase with Pm until the
system gets close to the bifurcation while the variance of �✓g
increases even if the system is far from the bifurcation. Both
autocorrelations of �Vg and �✓g in Fig. 6 increase with Pm.
However, the ratio q4/q1 is much larger for �Vg than �✓g .

IV. DISCUSSION

Fig. 7 shows the trajectory of the eigenvalues of the state
matrix A. The system passes through a saddle-node bifurcation
as the mechanical power is increased. Near the bifurcation, the
eigenvalues are very sensitive to the change of the bifurcation
parameter. As a result, the system is in the overdamped regime
(!0 < �) for much less than 0.1% distance in terms of
Pm to the critical transition. This is consistent with [20],
where the autocorrelation function is valid when the system is
within 0.1% to the saddle-node bifurcation such that the lowest
eigenvalue determines the system dynamics. Accordingly, it
can provide a good estimate of the autocorrelation and variance
of the system states for a very short range of the bifurcation
parameter, but the result of [20] can not be used as an early
warning sign.

Figs. 2-6 show that the variance and autocorrelation of
all four state variables increase when the system is more
stressed. This demonstrates that CSD occurs in this system as
it approaches the bifurcation, as suggested both general results
[9], and prior work for power systems [8], [20].

In addition to validating these prior results, several new
observations can be made. For example, the signs of CSD
are more clearly observable in some variables, and not others.
While all of the variables show some increases in autocorrela-
tion and variance, they are less clearly observable in �Vg . The
variance of �Vg decreases with Pm slightly until the vicinity
of the bifurcation. On the other hand, the variance of �✓g
always increases with Pm. Fig. 5 shows the two terms in the
expressions for �2

�Vg
and �2

�✓g
, from (25) and (26). The first

term in �2
�Vg

is always dominant and growing. On the other
hand, the second term in �2

�Vg
is larger for small Pm. The fact

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

�
2 �
V

g

Pm(pu)

 

 

Numerical

Analytical

First term

Second term

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

�
2 �
✓
g

Pm(pu)

 

 

Numerical

Analytical

First term

Second term

q4/q1 = 1.0 q4/q1 = 26.5

Fig. 5. Variance of �Vg and �✓g at different mechanical power (Pm) levels.
The two terms comprising the variances in (25) and (26) are also shown.
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Fig. 6. Autocorrelation of �Vg and �✓g versus Pm.

that this term decreases with Pm can be observed from C2 in
(18). Accordingly, the decrease of C2 with Pm causes �2

�Vg
to

decrease until Pm reaches the vicinity of the bifurcation. With
respect to �2

�✓g
, the second term in (26) increases with Pm,

and adds to the increase caused by the first term. In conclusion,
the variance of �✓g is a better indicator of proximity to the
bifurcation.

The results also show that the nonlinearity of this system
causes CSD to occur within it. In (8), one of the elements
of the state matrix (�!2

0) changes with Pm because of the
nonlinear relationship between the electrical power (Pg) and
the rotor angle, and that element causes the eigenvalues to
change with Pm. If the relationship between Pg and � were
linear, the state matrix would be constant. In [23], it is
shown that the stationary time correlation matrix of (1) can
be calculated using the following equation:

E
⇥
Z (t)ZT

(s)
⇤
= exp [�A�t]� (28)

where � is the covariance matrix of the state variables. From
(28), it can be inferred that the normalized autocorrelation
matrix only depends on A and the time lag. As a result, if the
state matrix is constant, the autocorrelations for an specific
time lag will be constant as well. Accordingly, in this system,
CSD is caused by the nonlinear relationship between Pg and
the rotor angle.

Further research is required to design methods that can
use CSD to accurately determine whether a particular state
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is approaching instability in larger power systems. However,
the following are some ideas for using this method in a real
power system. Using the analytical approaches in this paper
in combination with data, we expect to be able to estimate
baseline (normal) values for the variance and autocorrelation
of system variables. Doing so will require some extension of
the analytical approaches in this paper. While it is unlikely that
this approach can be used to produce explicit autocorrelation
functions, the method should be able to produce numerical
values for autocorrelations and variances. Also, using the
approach outlined here, the ratio of the statistics in critical
conditions to those in normal conditions can be calculated
from off-line studies. Using the base values and critical ratios,
one can calculate thresholds for CSD signs, which help in
informing system operators regarding a critical condition.
Calculating autocorrelation and variance from data is not
computationally expensive, which makes this method well-
suited for real-time application in large power grids.

V. CONCLUSION

In this paper, we derive analytical autocorrelation functions
for the state variables in a stochastic single machine infinite
bus system. The analytical results were confirmed by numer-
ical simulations. The functions show that this system does
indeed express critical slowing down, as evidenced by both
increased autocorrelation and variance, before the bifurcation
occurs. We also showed that the occurrence of CSD in this
system is due to its nonlinearity. Moreover, the results reveal
that there are some differences in the growth rate of the CSD
signs for different state variables; some variables are better
indicators of proximity to the bifurcation than others. These
findings suggest ways to better understand CSD in large multi-
machine power systems. Understanding the statistical behavior
of stochastic power systems as they approach instability should
allow for the development of new indicators of power system
stability based on the statistical properties of PMU data.
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