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Abstract—This paper describes a method for estimating the
impact of plug-in electric vehicle (PEV) charging on overhead
distribution transformers, based on detailed travel demand data
and under several different schemes for mitigating overloads
by shifting PEV charging times (smart charging). The paper
also presents a new smart charging algorithm that manages
PEV charging based on estimated transformer temperatures. We
simulated the varied behavior of drivers from the 2009 National
Household Transportation Survey, and transformer temperatures
based an IEEE standard dynamic thermal model. Results are
shown for Monte Carlo simulation of a 25kVA overhead dis-
tribution transformer, with ambient temperature data from hot
and cold climate locations, for uncontrolled and several smart-
charging scenarios. These results illustrate the substantial impact
of ambient temperatures on distribution transformer aging, and
indicate that temperature-based smart charging can dramatically
reduce both the mean and variance in transformer aging without
substantially reducing the frequency with which PEVs obtain
a full charge. Finally, the results indicate that simple smart
charging schemes, such as delaying charging until after midnight
can actually increase, rather than decrease, transformer aging.

Index Terms—Plug-in hybrid electric vehicles, transformer
aging, smart charging

I. INTRODUCTION
With a growing number of mass-market plug-in hybrid and

battery electric vehicles (collectively plug-in electric vehicles,
PEVs) currently for sale or scheduled to go on sale, there is
a growing need to understand the impact that PEV charging
load will have on the electricity distribution infrastructure.
Substantial research exists regarding the impacts of PEVs
on gasoline consumption [1], [2], power-plant emissions [3],
[4], electricity costs [5], [6], [7], transmission adequacy [8],
and generating supply adequacy [7], [9], [10]. However, the
literature on medium and low voltage distribution system
impacts (see Sec. I-B) is more limited and offers less guidance
to utilities looking to incorporate PEV impacts into their
maintenance and investment plans.
Several factors combine to make quantifying the impact

of PEVs on the medium and low voltage distribution in-
frastructure a particularly pressing issue. First, the social
benefits offered by PEV deployment in terms of reduced oil
consumption and life-cycle greenhouse gas emissions have
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prompted policies at the state and federal levels geared toward
increasing the rate of PEV adoption [11], [12], [13]. Second,
because early PEV adopters are likely motivated, at least in
part, by environmental concerns, and because there is evidence
from past hybrid electric vehicle sales that environmentally
motivated vehicle consumers tend to be geographically clus-
tered [14], [15], it is likely that PEV sales will be concentrated
in particular areas. This clustering means that PEV charging
loads will impact local distribution infrastructure well before
the impacts on transmission or generation infrastructure is
significant. If, as is suggested in [16], these impacts are severe
distribution utilities may need to make significant infrastruc-
ture investments in high-adoption locations to facilitate this
new load. Accurate information on PEV impacts is essential to
ensure that these investments are made in an efficient manner.
Thus the objective of this paper is to present, and illustrate
the utility of, a computational method for estimating the
additional transformer aging resulting from PEV charging load
and to evaluate different approaches to manage the additional
transformer load from PEV charging.

A. Background on modeling PEV power demand
Accurately estimating the impact of PEV charging on

electric power system components requires both component
models and good estimates of the magnitude and timing of
demand increases due to PEV charging. Early PEV research
assumed very simple charging profiles, such as assuming that
vehicles will charge daily starting at 17:00, 18:00 or 19:00
hours, with batteries fully depleted at the start of each charge
cycle [17], [2], [7], [18]. However actual PEV charging loads
will depend highly on travel patterns, which vary tremendously
from driver to driver and day to day. To better capture this
variability in driving behavior, researchers have used either
detailed GPS data for small groups of drivers, or survey data
from larger populations. Ref. [19] used data from 9 drivers
to estimate variability in daily miles driven, but with fixed
evening arrival times. Another study [20] used GPS data from
76 vehicles to derive a stochastic model of miles driven and
arrival/departure times. Reference [21] uses a larger set of GPS
data to develop a Monte Carlo model that is similar to the one
presented here, but the data are not used to model the miles
driven, which is necessary to estimate the battery state-of-
charge on arrival. Other researchers have also use Monte Carlo
methods to study PEV charging impacts [22], [23], [24] but
do not specifically consider distribution transformer aging. The
authors in [22] study harmonics due to PEV fast charging; Ref.
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[23] investigates system level PEV charging impacts including
bus voltages, branch currents, and energy losses; and [24]
uses a Monte Carlo model to predict reliability, efficiency and
profitability of Vehicle-to-Grid (V2G) technology.
While GPS data can allow one to estimate day-to-day

variability in driver behavior, the small sample sizes, typical of
GPS studies, may result in biased outcomes. An alternative (or
perhaps supplement) is to use large-scale driver survey data,
such as the US National Household Travel Survey (NHTS)
[25] to estimate driver behavior. Ref. [26] used NHTS data to
develop a probabilistic model for PEV loads, but focused on
modeling large numbers of vehicles, such that the patterns for
individual PEVs are averaged. This paper also employs the
NHTS data, but with a pure sampling strategy that allows for
precise tracking of vehicle departure and arrival times, and the
battery state of charge.

B. Background on transformer aging models
There is conflicting evidence regarding the impact of PEVs

on the residential distribution infrastructure. Ref. [16] uses a
time-series model of transformer aging and argues that PEV
charging could decrease transformer life by 93%. The study
results, however, are based on a transformer model [27] that
does not consider the impact of transient ambient temperatures.
Another study [28] suggests that a PEV penetration level as
small as 10% could induce additional distribution transformer
overloading beyond planned overloading. Ref. [29] discusses
two residential distribution circuits and estimates that distri-
bution infrastructure costs could increase by 19% and energy
losses could increase by 40% with substantial (60%) PEV
deployment.
Transformers are among the most costly components in

the medium and low voltage distribution infrastructure, and
therefore, transformer aging is a key consideration when
evaluating the impacts of PEV charging and deciding whether
or not to employ smart charging. Transformer aging depends
highly on the state of internal insulation material, which is
impacted by internal transformer temperatures, specifically the
hottest spot temperature. Accurately modeling hottest spot
temperature is crucial to accurately predicting transformer
aging. Pierce [30] provides a detailed thermodynamic model
of transformer temperatures and fluid flow during transient
temperature and loading conditions. This method became the
industry standard when it was published in the 1995 revision
of IEEE C57.91 [31] as Annex G. The Annex G method is
not, to our knowledge, contested in the existing literature, and
was thus chosen for the transformer model used in this paper.

C. Background on Smart Charging
The extent to which PEV charging will impact the distribu-

tion infrastructure will depend highly on the charging method
used. For instance, the results of [8] and [32] suggest that
impacts of PEV charging on components of residential feeders
could be minimal given the presence of smart charging, and
Ref. [33] argues that PEV deployment with smart charging
could yield net benefits for the distribution system by leveling
power demand and thus reducing distribution losses per unit

energy. Ref. [19] used GPS travel data to obtain expected
transformer insulation life in different charging scenarios, and
proposed a smart-charging algorithm to reduce the loss of life
in transformers. The authors in [34] used time-of-use price
to find optimal charging loads, which minimize the charging
cost in a regulated market. They argue that using their method
reduces cost and flattens the load curve. Ref. [35] used the
same GPS data as [20] to predict realistic driving habits and
proposes a decision-making process for charging based on a
fuzzy-logic system. The authors in [36] proposed an optimal
charge management algorithm for a large number of PEVs in
a parking lot and compare their optimization algorithm with
more traditional methods. Ref. [37] investigated unidirectional
V2G to maximize aggregator profit while satisfying system
load and price constraints; different smart charging algorithms
for a hypothetical group of commuter cars are simulated
to obtain a continuous variable charge rate. They showed
the benefits of combining regulation and reserves bids [38]
and concluded that that price constrained optimal bidding
outperforms other methods. Centralized charging of PEVs is
studied in [39] to minimize distribution network losses using
three different objective functions and using simplified travel
behavior. In addition, there is substantial international research
into electric vehicle smart charging (e.g., [40], [41], [42]),
as well as international efforts to develop standards for PEV
communications (e.g., ISO 15118 [43]).
This paper extends previous work [44] to describe both

a method for estimating the impact of PEV charging on
overhead distribution transformers (given a time-series trans-
former insulation material thermal model and PEV charg-
ing demand derived from observed light-duty vehicle travel
patterns) and a method for mitigating this impact through
a transformer temperature-based smart charging algorithm
designed to reduce damaging transformer overloading. Fur-
thermore, temperature-based control is compared to several
other approaches to smart charging. Sec. II describes a method
for modeling residential load with PEV charging. Sec. III
describes the transformer thermal model, summarizing and
providing a supplemental guide to the Annex G transformer
thermal model. Sec. IV describes the various smart charging
algorithms employed, which is followed by results (Sec. V).
Finally we summarize our conclusions in Sec. VI.

II. MODELING PEV CHARGING LOADS

In this paper, residential load profiles are comprised of two
components: residential baseline load (Lh) and load from PEV
charging (Lv). As we are primarily focused on the effect
of PEV loads, we assumed that each home connected to a
distribution transformer has identical, deterministic baseline
load. However, in order to study travel pattern variation, we
sampled from empirical travel data to develop a Monte-Carlo
model of the PEV portion of the residential load profile.

A. Residential baseline load without PEV charging
The National Energy Modeling System (NEMS) reported

itemized residential load profiles in [45], which are interpreted
in [28] to produce a single home daily load profile. We fed
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Figure 1. The top panel shows the daily baseline load profile with and without
PEVs for a 25kVA overhead distribution transformer servicing 12 homes and
6 randomly selected PEVs charging at AC Level 1 and AC Level 2. Both
charging levels correspond to the same sample set of PEV charging behavior.
The middle and lower panels show the state of each vehicle throughout the
day, which is one of: away (white), parked but not charging (gray), or charging
(black).

these data into a cubic spline to produce a one home, 24-
hour load profile, Lh(t), with one minute time steps. Our
model multiplied this daily pattern by the quantity of homes
(nh) serviced by an overhead distribution transformer to obtain
the total transformer load, before adding vehicles. The power
factor for the residential loads was assumed to be 0.9 lagging.
The result is a baseline demand profile, which we assume
to be constant from day to day over a one-year period. Fig.
1 displays the daily baseline demand profile for a 25kVA
transformer servicing 12 homes and 6 PEVs, along with
the travel patterns for the 6 PEVs. Baseline load values in
Fig. 1 that are in excess of the 25kVA transformer rating
represent periods of planned overloading, which are acceptable
according to [31].

B. Additional load from PEV charging
This section describes the method used to develop a Monte

Carlo model of PEV load (Lv), based on National Household
Transportation Survey data [25]. The NHTS is a comprehen-
sive survey of U.S. travel patterns conducted by the Federal
Highway Administration. The survey data aim to include all
trips taken by all members of the household within a 24 hour
period including the length, timing, duration and mode of
transportation for each trip. As the NHTS travel data do not
reflect behavior of PEV-specific drivers, we assume that travel
behavior of PEV and non-PEV drivers is indistinguishable.
The goal of the PEV charging model was to estimate the

additional time-varying load that would result from n v vehicles
charging at a certain point in a power grid. For each one-
year run of our model we randomly selected n v vehicles

Figure 2. AC power consumption and power factor for a full (AC Level 1)
charge of a GM Volt. Data courtesy of Central Vermont Public Service.

from among the vehicles in the New England subset of the
NHTS data that both start and end the day at home. In
our model half of the vehicles were assumed to have the
charging and efficiency characteristics of the Chevrolet Volt
(10.4 kWh battery and 0.26 kWh/mile), and the other half
had the characteristics of the Nissan Leaf (24 kWh and 0.24
kWh/mi)1. Additionally, we assumed that all PEVs charge
exclusively from a home charging station. Without smart
charging in place, we assumed charging begins immediately
upon the vehicle’s arrival at home and continues until either
the battery reaches full capacity or the vehicle begins a new
trip. We assumed either AC Level 1 (1.4 kW) or AC Level 2 (7
kW) charging as established in [46] and 85% charge efficiency
as reported in [47]. Based on data obtained from a GM Volt
(Fig. 2), we assumed that the power draw was constant until
the battery fully charged and that the power factor was 1.0.
The sampling method used in this paper represents the state

of each vehicle v using two variables: the state-of-charge for
each battery (represented by Dv, the amount of energy needed
to fill the battery) and a binary variable,Av , indicating whether
the vehicle is parked at home and connected to a wall socket.
Thus, the time required to fully charge the battery of vehicle
v at charge rate Pv is Tv = Dv/Pv. If the step size for vehicle
modeling is ∆t (in units of hours), the load (in kW) due to
vehicle v during time interval [t, t+∆t) is:

Lv(t,∆t) =






Av(t)Pv, ifTv(t) ≥ ∆t

Av(t)
Dv(t)
∆t if 0 < Tv(t) < ∆t

0, ifTv(t) ≤ 0
(1)

For the purposes of this model, we randomly select a weekday
and a weekend driving profile from the New England subset
of the NHTS data for each v. These are reproduced to give a
one-year charging pattern for each vehicle. We chose a vehicle
model step size (∆t) of 0.25 hours.
The total load (in kVA) on the transformer is the combina-

tion of the nh (complex) residential loads and loading from
nv randomly selected PEVs:

L(t) =

∣∣∣∣∣nhLh(t) +
nv∑

v=1

Lv(t)

∣∣∣∣∣ (2)

Fig. 1 illustrates the results from the model by showing the
additional load due to 6 PEVs added to the load for 12 homes,
at Level 1 and Level 2 charging rates.

1Battery size and efficiency calculated from data provided in the vehicle
owner’s manuals from GM and Nissan.
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It is important to note that the baseload data Lh(t) (as well
as the temperature data for the thermal model below), were
initially available at hourly intervals. These were translated
into one-minute data (the step size for the thermal model)
using a cubic spline. The PEV load is also translated into
one-minute data, from the 15 minute step size in the model,
assuming that the PEV load does not change within each 15
minute interval.

III. MODELING DISTRIBUTION TRANSFORMER AGING
Our model for estimating distribution transformer aging

simulates the thermal performance of an overhead distribution
transformer, installed in a location with a known trajectory
of ambient temperatures TA(t) and load L(t), based on IEEE
C57.91-1995. One-minute ambient temperature data, TA(t),
were obtained by feeding hourly temperature data from the
National Climatic Data Center2 into a cubic spline to produce
one-minute data. The combined PEV/baseline data came from
(2). We obtained transformer specifications from data provided
by a local distribution utility.
The output of the model is an estimate of the total one-

year accelerated aging of the transformer insulation material,
in years. When this “Factor of Equivalent Aging” (FEQA) is
greater than 1.0, the transformer is aging at a rate that is greater
than its designed level of 1 year per year.

A. Transformer thermal model
The transformer thermal model estimates internal trans-

former temperatures using the Annex G method of IEEE
C57.91-1995 [31]. Annex G describes the heat transfer and
fluid flow dynamics of the transformer while accounting for
transient loading and ambient temperature conditions, changes
in oil viscosity and winding resistance, and cooling mode.
While the reader should refer to Annex G for precise details,
the core of the method consists of three differential equations
for internal transformer temperatures, which have the general
form:

dTW

dt
= f1

(
L2(t), TW (t)− TDAO(t)

)
(3)

dTO

dt
= f2

(
L2(t), TA(t)− TO(t), ... (4)

TW (t)− TDAO(t))
dTHS

dt
= f3

(
L2(t), TW (t)− THS(t)

)
(5)

The first equation (3) describes the average transformer wind-
ing temperature, TW (t), as a function of the square of load,
L2(t), and the average temperature of fluid in the winding
cooling ducts, TDAO(t). The second (4) models the average
cooling oil temperature, TO(t), based on the difference be-
tween TW (t) and TDAO(t), and between TA(t) and TO(t).
Equation (5) describes the transformer hottest spot temperature
based on the difference of TW (t) and THS(t). Calculated
values for (5) are used in the transformer damage function,
as described in Sec. III-C. Following the procedure in Annex
G, we solved (3)-(5) using first order Euler’s method, with a
1-minute time step.
2http://www.ncdc.noaa.gov

Figure 3. Illustration of model estimating distribution transformer aging
over the course of one day. The transformer modeled is a 25kVA overhead
distribution transformer servicing 12 homes. The temperature data come from
Phoenix, Arizona, 2010. The transformer is modeled under zero PEVs, 6 PEVs
with uncoordinated AC Level 2 charging and 6 PEVs with temperature-based
AC Level 2 smart charging (“Smart” in the graph above). The top panel shows
load as seen by the transformer. The middle panel shows ambient temperature
and internal transformer temperatures; TO and TW are only shown for the
base load case. The bottom panel shows the instantaneous factor of accelerated
aging, FAA(t).

B. Transformer insulation loss-of-life equations
Transformer insulation typically fails prior to other com-

ponents within a transformer. For this reason, the estimated
life of a transformer is primarily a function of aging within
the transformer insulation. Accelerated aging is a measure
of how quickly the transformer insulation degrades under
actual conditions, relative to degradation at rated loading and
rated ambient temperature conditions. Clause 5 of IEEE Std.
C57.91-1995 [31] provides a method for estimating distribu-
tion transformer aging, which we summarize here.
Excessively high hottest spot temperatures damage a trans-

former’s insulation through the destructive process of pyrolysis
[48]. To model this, the calculated THS(t) are fed into a dam-
age function [31] that estimates the instantaneous accelerated
aging of the transformer (FAA(t)), which can be integrated
to compute the total transformer thermal aging over a time
horizon (T ) to yield the average Factor of Equivalent Aging
(FEQA):

FEQA(t) =
1

T

∫ t

t−T
e

(
15,000

THS,R+273−
15,000

THS(t)+273

)

dt, (6)

Equation (6) was used to estimate the total distribution trans-
former aging over a T = 1 year period.

C. Distribution transformer aging model sample result
Fig. 3 illustrates the combined effect of the transformer ther-

mal model and transformer insulation aging equations, with
and without PEV-charging load (nv = 6) and under smart and
uncontrolled charging. For this sample result, the transformer
thermal model produced transformer internal temperatures and
FAA values for a 25kVA distribution transformer serving 12
homes. Table I describes the transformer parameters used in
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Table I
TRANSFORMER PARAMETERS USED*

Parameter Symbol 25kVA
Rated httest spot temp. THS,R 84.4 ◦C
Rated winding temp. TW,R 77.0 ◦C
Rated ambient temp. TA,R 30 ◦C
Volume of oil - 41.6 L
Mass of core MC 79.9 kg

*Parameter values were obtained from transformer manufacturer specifica-
tion sheet provided by a local utility. Parameter values not provided by
the manufacturer (not shown) were chosen in accordance with Annex G
recommendations.

this study. The ambient temperature in Fig. 3 represents a 2010
“hot” day in Phoenix, AZ. As shown in the lower panel of Fig.
3, the uncontrolled PEV charging case exhibits a brief period
of extreme aging, approaching 50 years per year.

IV. SMART CHARGING METHODS

If a distribution transformer is overloaded due to PEV
charging, it can either be replaced with a larger unit, or the
PEV load can be managed with financial incentives and smart
charging technology. This section describes several different
approaches to smart charging, which might be employed to
to extend the life of a transformer serving several electric
vehicles.
A successful smart charging algorithm should ensure that all

PEVs receive as close to a full charge as possible, thus min-
imally inconveniencing the PEV owner, while mitigating the
negative impacts of high loads on the electricity infrastructure.
The smart charging algorithm proposed in Sec. IV-A seeks to
do this directly by determining how many PEVs may charge
at a given time without pushing the distribution transformer
into sustained, rapid accelerated aging. Other approaches are
discussed in Sec. IV-B. In all cases, we assume that smart
meters (Advanced Metering Infrastructure) are installed at
each home, which allow a charge management device at the
transformer to monitor instantaneous loads and send signals
to vehicles connected to the transformer to forgo charging for
a specified time period. Finally, we also assume that sufficient
financial incentives and technology are in place to ensure
participation. While this last assumption is unrealistic (some
vehicle owners are unlikely to participate in smart charging
programs), doing so allows us to understand the impact of
different approaches.

A. Smart charging based on transformer temperature
Our smart charging algorithm requires two inputs: the

transformer aging status, comprised of FAA(t) and FEQA(t),
which are derived from the aging calculations in Sec. III, and
the quantity of PEVs requesting charge, qr(t). The algorithm
yields one output: the quantity of PEVs that may charge at
time t: q(t) ≤ qr(t). When implemented in a charge man-
agement device associated with a transformer, the algorithm
operates in two steps. Step one determines q(t). The second
step dispatches a signal to smart meters, which subsequently
signal each vehicle to either continue or discontinue charging.
Step two is performed by random allocation, which has the
advantages of 1.) not requiring the exchange of information

pertaining to battery level and 2.) avoiding the need to decide
which PEV “deserves” charging precedence.
To determine the modeled transformer aging status, we

assume that smart meters report instantaneous household load
to the transformer, as well as the number of vehicles available
for charge management, qr(t). The aggregated L(t) and a
measured value for TA(t) are fed into the transformer thermal
model (Sec. III), which yields FAA(t) and FEQA(t) averaged
over a period of time. An FEQA averaging period of 12 hours
was chosen to ensure that brief periods of high-temperature
operation did not extend to produce high average aging over
longer periods. Numerical tests of the algorithm with averag-
ing periods of 6, 12, 18, and 24 hours did not show that the
averaging period had a statistically significant effect on annual
transformer aging.3
After calculating FAA(t) and FEQA(t), the algorithm com-

pares the modeled transformer aging status against four ag-
ing thresholds (HEQA, Hmin, Hmed, and Hmax) to determine
whether q(t) should be increased, decreased, or held constant
in the next time period. Equation (8) is used to choose the
change in q(t) from the previous time period:

q(t) = q(t−∆t) +∆q(t) (7)

∆q(t) =






+1, if (FAA < Hmin) or
(FAA < Hmed&FEQA < HEQA)

−1, ifFAA > Hmed

−2, ifFAA > Hmax

0 otherwise.

(8)

Table I provides suggested aging threshold values, as deter-
mined from numerical experimentation.

Table II
AGING THRESHOLDS USED FOR TEMPERATURE-BASED SMART

CHARGING ALGORITHM

HEQA Hmin Hmed Hmax

2.5 3.5 4 4.75

Unless q(t) is greater than qr(t), in which case all requesting
PEVs may charge, the smart charging algorithm randomly
chooses q(t) vehicles from the set of vehicles that are currently
requesting charge, qr(t), and signals the smart meters to allow
or forgo charging to their respective PEVs.
Fig. 3 highlights the differences between uncontrolled and

smart charging using a transformer operating during a high-
temperature, 24 hour period for Phoenix, Arizona and serving
six PEVs. The smart charging algorithm delayed charging for
several vehicles, away from the hottest hours or heaviest load
periods of the day.
Note that the communication costs for this control algorithm

are minimal. The only data exchange that is needed is for
the vehicle to query a “transformer control agent” once every
15 minutes to request permission to charge. The transformer
would need to assemble the requests and randomly grant a
subset of these requests, according to (8). The transformer
control agent does not need to gather information about the
battery state of charge, the departure time of the vehicle, or

3In our test, mean aging ranged from 1.572 to 1.588, with a standard
deviation of 0.2. The differences were not significant.
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whether the PEVs will charge at other locations, which is
advantageous in terms of customer privacy and simplicity. The
algorithm, as implemented, is fully capable of handling the
adding and removing of vehicles, assuming that the vehicles
can communicate with the control agent. We assume that this
communication would be encouraged through a preferential
smart charging rate structure.
The algorithm could also be applied without major changes

to mitigate overloads on a distribution feeder transformer,
so long as there was sufficient communication bandwidth to
facilitate requests between the vehicles and the transformer.
Also, the algorithm assumes that PEVs can only be controlled
in a binary manner, making it feasible to implement within
bandwidth-limited, high latency first generation Advanced
Metering Infrastructure (AMI). As AMI improves, real-time
communications between grid infrastructure and smart meters
will be increasingly feasible, making it feasible to adapt the
temperature-based control algorithm for bi- or unidirectional
and continuous charging control (V2G).

B. Other smart charging methods
To compare temperature-based smart charging to other

approaches, we measured transformer aging and the frequency
of charge mitigation for three existing smart charging methods:
1) After Midnight (AM): all charging is postponed until
after 12:00 am, and before 6:00 am to avoid the peak
load period;

2) Load Cutting (LC): charging starts immediately upon
the arrival of the PEV at the home charging station
but is limited based on the aggregate transformer load
such that PEV charging (w/ 15 minute intervals) is
randomly allocated every 15 minutes, to ensure that
the transformer load remains below its load limit; in
a variant of this method, the load limit is increased to
30kVA during nighttime hours (10:00 pm - 8:00 am);

3) “Randomized Charging Strategy”: following the method
proposed in [19], a random array of charging time slots,
with 15 minute intervals, is allocated between 7:00 pm
or the vehicle arrival time (whichever is later), to ensure
that the vehicle is charged by 6:00 am.

V. RESULTS
As concluded in previous work [44], ambient tempera-

tures can dramatically affect the impact of PEV charging on
transformers. Therefore, we examined PEV charging impacts
with one year of ambient temperature data from two cli-
matically distinct U.S. cities: Burlington, Vermont (VT) and
Phoenix, Arizona (AZ), which have average July temperatures
of 21.4◦C and 34.8◦C respectively. The main goal was to
compute the annual factor of equivalent aging (FEQA), which
we also refer to as the transformer’s aging rate. To compensate
for variability in PEV driver travel behavior, we ran the
transformer model for 10,000 sets of randomly generated
travel patterns, under each of the following five test conditions,
for both locations: 1) no PEV charging; 2) AC Level 1,
uncoordinated PEV charging; 3) AC Level 1, temperature-
based smart PEV charging; 4) AC Level 2, uncoordinated PEV
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Figure 4. The annual factor of equivalent aging (FEQA) for Burlington, VT
& Phoenix, AZ for no PEVs, uncontrolled PEV charging, and temperature-
based smart charging. The graph displays average (bars) and 10th − 50th

& 50th − 90th percentile (black lines) FEQA values for each location and
charging rate.

charging; and 5) AC Level 2, temperature-based smart PEV
charging. In addition, the three smart charging algorithms from
Sec. IV-B were compared, for both charging levels and in both
locations. As in Fig. 3, the 25 kVA transformer was assumed
to serve 12 homes and 6 vehicles, each with unique weekday
and weekend travel patterns for each model run. The average
baseline load was 22.8 kVA, which is near the rated limit.
Figure 4 shows the simulation results for no PEVs, un-

controlled, and temperature-based charging for each location.
The uncontrolled charging results show a substantial differ-
ence between AC Level 1 and 2 charging. Level 2 charging
increases aging rates by a factor of 5.6 and 4.2 above the un-
controlled level, in Vermont and Arizona respectively. Clearly,
higher charging rates will result in increased aging rates
for distribution infrastructure. Additionally, the results show
that temperature-based smart charging can dramatically reduce
transformer aging. The proposed smart charging algorithm
reduced average transformer aging in Burlington by a factor
of 1.4 for AC Level 1 and a factor of 4.8 for AC Level 2,
relative to uncontrolled charging. In Phoenix, the differences
are greater, with average FEQA falling by factors of 1.8 and
6.3 for Levels 1 and 2, respectively. For all cases, a two-sample
Kolmogorov-Smirnov test shows statistical significance of the
reduction in aging from temperature-based smart charging
(p < 10−3 for all cases).
The results also indicate that temperature-based smart charg-

ing can dramatically reduce the uncertainty in transformer ag-
ing that results from differing travel patterns among vehicles.
The 90th percentile aging rates for the Level 2 cases (from Fig.
4) decrease by an order of magnitude under temperature-based
smart charging in both Arizona and Vermont. This indicates
that temperature-based smart charging can reduce both the
average, and the variance in transformer life expectancy under
high levels of PEV adoption.
It is important to emphasize that an algorithm that re-

duces aging but does not allow adequate charging to the
PEV batteries is not desirable. To ensure that the proposed
smart charging method resulted in adequate PEV charging, we
measured the number of cases in which vehicles fully charged
before beginning their next trip, after having been parked at
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Figure 5. Transformer aging (FEQA) results for uncontrolled charging,
and four smart-charging methods: load cutting (LC), after midnight (AM),
randomized charging [19], and our temperature-based method. The graph
displays average (bars) and 10th − 50th & 50th − 90th percentile (black
lines) FEQA values for each location and charging rate.
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Figure 6. Average percent successful charging for uncontrolled charging and
each of the smart charging methods in Fig. 5.

home for an extended period of time. Specifically, we define
a “successful charge” to be a period in which the battery was
charged to at least 95% of its capacity after being at home long
enough to have received a full charge at the unmitigated Level
1 or 2 charging rate. We found that for both charging rates and
both locations, vehicles received successful charges in greater
than 98% of extended home stays. The only exception to this
was AC Level 2 in Arizona which showed an average of 97%
successful charge rate. Given that the algorithm achieves a very
high rate of charging success for the case of a very heavily
loaded transformer, we conclude that the proposed scheme
would have almost no noticeable effect on most PEV owners.
For comparison purposes, the three smart charging methods

described in Sec. IV-B were evaluated under the same model
parameters as those for the temperature-based smart charging
method (both locations and both charging rates). As before,
we compared the average annual aging rate (FEQA) for 10,000
iterations and the average percent of successful charges. The
results of these simulations are found in Figs. 5 and 6.
All simulated cases showed that load cutting method sub-

stantially reduced distribution transformer aging. For AC Level
1, the aging rate decreased from 0.42 (for uncontrolled charg-
ing) to 0.18 in VT, and from 2.30 to 1.07 in AZ. For AC Level
2, the average aging rate decreased from 2.34 (for uncontrolled

charging) to 0.15 in VT and from 9.79 to 0.90 in AZ. However,
the successful charge rate for load cutting was only 66.6% for
AC Level 2 and 95.2% for Level 1, which is notably lower
that what was obtained from the temperature-based algorithm.
This indicates that controlling transformer load based on
temperature or aging, rather than merely based on load, will
reduce the need to curtail PEV charging loads, likely leading
to less customer aggravation. In order to further explore the
load-cutting method, we attempted to improve the results by
increasing the load limit by 20% (to 30 kVA) during night-time
hours (10:00 pm to 8:00 am). This modification caused the
percent of successful charges to increase by as much as 10%
in Level 2 charging (from 67% to 77%), but did not have a
significant impact on successful charges in Level 1 charging, or
on the average aging rate. The reason is that in the simple load
cutting method many Level 2 charging instances are cut when
the transformer reaches its full load, but in Level 1 charging
the lower charging power allows more PEVs to obtain nearly
a full charge before departing. However, in the modified load-
cutting method a greater quantity of Level 2 charging occurs
during the night, without substantially increasing the aging
rate. The results make the modified version more desirable
than the simple load cutting method, but still less attractive
than the temperature-based method.
At AC Level 1, the after-midnight method resulted in a

decrease in aging from 0.42 to 0.15 (compared to uncontrolled
charging) for Vermont, and from 2.30 to 0.90 Arizona. At
AC Level 2, however, the after-midnight method resulted in
an increase in average aging rate from 2.34 to 2.91 and
from 9.79 to 10.81 for VT and AZ, respectively. Additionally,
the percent of successful charges were quite low: 62.5% for
Level 1 and 76.5% for Level 2. These results show that time-
delayed charging may only be helpful in reducing distribution
transformer aging when AC Level 1 is used, and can have
a substantial negative impact on transformer life with higher
charging rates. In both cases, the after-midnight method results
in a low rate of successful charges, because charging is delayed
until after 12:00 am.
The randomized charging strategy from [19] also produced

good results in terms of mitigating distribution transformer
aging. For AC Level 1, the aging rate decreased from 0.42 to
0.19 in VT and from 2.30 to 1.15 in AZ. For AC Level 2,
the average aging rate decreased from 2.34 to 0.26 in VT and
from 9.79 to 1.47 in AZ. However, the percent of successful
charges was found to be 81.3% and 75.1% for AC Levels 1 and
2 respectively. Therefore, the randomized charging strategy,
which clearly is effective in reducing distribution transformer
aging, may be less desirable given the need to maintain a
favorable battery state of charge.

VI. CONCLUSIONS

This paper describes a method for estimating and miti-
gating the impact of electric vehicle charging on overhead
distribution transformers by combining a transformer thermal
aging model with empirical travel behavior and a temperature-
based smart charging algorithm. We use Monte Carlo simu-
lation to estimate thermal aging in a fully loaded 25 kVA
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overhead distribution transformer serving 12 homes and 6
PEVs, with ambient temperature data from Phoenix, Arizona
and Burlington, Vermont. We compared the thermal aging
in the transformer, as well as the likelihood that vehicles
would be able to successfully charge their batteries, for several
smart charging algorithms, including a new temperature based
control algorithm proposed in this paper.
The results suggest a number of interesting conclusions.

First, we found that in all cases the warmer climate of Phoenix,
AZ resulted in notably more transformer aging, relative to
the cooler climate of Burlington, VT. This indicates that, in
cooler climates, a moderate amount of overloading from PEV
charging may not substantially decrease transformer life. The
results also highlight the need to use location-specific ambient
temperature data when evaluating the impact of PEV charging
on thermally sensitive infrastructure. Additionally, because of
the variability in driver behavior and the exponential aging
function, PEV charging is likely to introduce enormous un-
certainty in transformer aging, particularly for hot climates.
Second, the results show that smart charging in general, and
the proposed temperature-based algorithm in particular, can
substantially reduce transformer aging. These reductions were
substantially greater in the hot climate location, relative to the
cool climate one. In addition to this average effect, we found
that smart charging can also reduce uncertainty in transformer
life, in the face of highly uncertain vehicle travel behavior.
These benefits came with very little cost in terms of

inconvenience to PEV drivers. In the proposed temperature-
based method, vehicles were able to charge their batteries to
at least 95%, after having been at home for long enough to
get a full charge, in more than 97% of all cases. While the
model indicated that other smart charging algorithms can also
reduce transformer aging, methods that were not explicitly
focused on mitigating transformer damage tended to result
in a greater number of unsuccessful charges. For the case of
vehicles charging at AC Level 2 rates, but only being allowed
to charge after midnight, smart charging actually increased,
rather than decreased transformer aging over the uncontrolled
case. Time-of-use pricing schemes, in which vehicles could
charge at a reduced cost after a certain hour, could have
a similar negative impact on the distribution infrastructure.
This emphasizes the need to exercise caution when designing
new incentives and technology for time-delayed charging.
Unintended consequences, such as creating a sudden spike in
load when lower-priced electricity becomes available, could
have costly impacts on power delivery infrastructure.
While the focus of this paper is on mitigating transformer

damage due to electric vehicle charging, similar methods can
be used (and similar results are likely to be obtained), if the
proposed temperature-based smart charging algorithm were
applied to other large loads that can be time-shifted, such as
air-conditioners and water heaters. Also, the relatively smart-
charging algorithm proposed in this paper considers only one
constraint: the thermal limit of a transformer. Future work
will focus on integrated control methods that can manage
smart charging to satisfy the many limits in a power system,
such as bulk generation availability (and bulk prices) as well
the thermal limits of power transformers and underground

cables. In addition, as the communications capabilities of
AMI systems improve, it will become increasingly feasible
to deploy more sophisticated load management algorithms. In
future work, we will also investigate the potential benefits and
costs of continuous, rather than binary electric vehicle charge
management methods.
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