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Abstract

This paper describes two new approaches to cascad-
ing failure analysis in power systems that can combine
large amounts of data about cascading blackouts to
produce information about the ways that cascades
may propagate. In the first, we evaluate methods for
representing cascading failure information in the form
of a graph. We refer to these graphs as “dual graphs”
because the vertices are the transmission lines (the
physical links), rather than the more conventional ap-
proach of representing power system buses as vertices.
Examples of these ideas using the IEEE 30 bus system
indicate that the “dual graph” methods can provide
useful insight into how cascades propagate. In the
second part of the paper we describe a random chem-
istry algorithm that can search through the enormous
space of possible combinations of potential component
outages to efficiently find large collections of the most
dangerous combinations. This method was applied to a
power grid with 2896 transmission branches, and pro-
vides insight into component outages that are notably
more likely than others to trigger a cascading failure.
In the conclusions we discuss potential uses of these
methods for power systems planning and operations.

I. Introduction

Most, if not all, of the largest power system failures
are made worse by cascading failure: an event in
which a set of exogenous triggers sets off a subse-
quent sequence of endogenous (dependent) component
outages. Cascading failures of this sort are a common
feature of many network systems. Forest fires, financial
collapses, disease epidemics, idea contagion and traffic
jams can all be modeled as types of cascading. Cas-
cading failures are also relatively common in electric

power transmission systems. Empirical data indicate
that dependent line outages are relatively frequent [1].
Large blackouts, such as the events of September 8,
2011 [2] and August 14, 2003 [3], remind us that
cascading failures in power systems can produce very
large blackouts.

Motivated by the potentially disastrous impacts of
cascading failure on the performance of networks that
are key to modern society, numerous researchers have
proposed models with which to study cascading failure
in different types of networks. There is a large body
of research (e.g., [4]) into the general mechanisms of
cascading (sometimes known as “contagion models”
). Topological threshold models, (similar to the one
discussed in [4]), have provided insight into several
types of cascading, such as biological contagion [5],
[6], [7], [8] and social influence spreading [9], [10].
Several have used topological contagion models to
study cascading failure in power systems. Some of
these papers come to provocative conclusions, such
as that power systems are particularly vulnerable to
attacks at low-load locations [11], or that coupling
between information networks and power infrastructure
can dramatically increase systemic risk [12]. However,
there is some reason to believe that topological models
can lead to misleading conclusions [13].

A variety of modeling approaches are used to study
cascading in electric power systems. Sequential steady
state cascading failure simulators that use DC power
flow simplifications are relatively common [14], [15],
[16]. Simulators that use AC power flow models also
exist [17], [18], but can be challenging to use due
to the difficulty of modeling voltage collapse in a
steady-state model. There are some ongoing efforts to
simulate cascading failure using dynamic models of
cascading failure in power systems [19], [20], but even
these require difficult assumptions about load-voltage
relationships and operator responses. Even the simplest
power-flow based models of cascading failure require
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substantial engineering knowledge to implement and
use effectively, making cascading failure modeling a
particularly important and challenging problem.

In order to provide higher-level statistical informa-
tion about cascading, one of us has proposed simple
statistical branching process models based on empirical
and simulated data [21], [1], [22], [23] to describe
cascading failure risk. While these models can track
numbers of lines outaged and amount of load shed,
these models do not retain information about network
structure and do not attempt to represent how cascades
spread in the network.

It is our conjecture that there could be value in find-
ing ways to develop models of cascading that would be
amenable to analysis with the tools of complex network
theory, but without disregarding the basic physics of
power flows and limits in a power system. With this
in mind, the goals of this paper are (1) to propose
several different ways to represent complex information
related to cascading failure in the form of a graph,
(2) to present results from a new “Random Chem-
istry” method to identify large collections of potentially
hazardous cascading sequences, and (3) to discuss
ways that these two approaches might be combined to
provide useful information about cascading failure to
power grid operators. Section II discusses the proposed
“dual graph” methods for describing cascading failure
data. Section III summarizes the Random Chemistry
algorithm, and some patterns identified in the large sets
of interacting multiple contingencies that result. Finally,
Section IV discusses ways that these methods might be
used to improve cascading failure awareness in opera-
tions, operational planning, and planning applications.

II. “Dual Graph” Methods for Cascading

Failure Analysis

It is common in network science research to study
cascading failure in any network (not just power grids)
as a process in which vertices (nodes) represent com-
ponents of the network that might fail, and edges
(links) represent connections over which node failures
might spread. Many have recently studied failures in
power grids using topological network models in which
the nodes are buses and the links are transmission
lines [11], [12], [24]. While this approach is naively
intuitive, the results do not correspond to how power
systems work. See [13] for an example of how topo-
logical models can produce misleading results. In a
power grid it is very rare that a bus will fail to operate,
except for rare bus fault cases. And if a bus (say bus
A) were to fail, it is by no means necessarily the
case that the next component to fail will be a bus

that is connected to bus A by a transmission line (a
topological neighbor). While failures do not generally
propagate through topological connections, failures do
propagate through the electrical interactions that result
from Kirchhoff’s and Ohm’s laws.

An alternative way to produce a graph representation
of a power grid is to consider the vertices of the
graph to be the transmission lines, and the edges to
be some measure of influence among the transmission
lines. Doing so essentially results in a “dual graph”
in which the physical links become vertices in a new
graph representation of the network, and the edges rep-
resent virtual connections or interactions between the
physical links. This section explores three approaches
to studying cascading failure using variants of this
dual graph approach. Preliminary results for each dual
graph indicate the utility of the method, and suggest
application areas in which the dual graph approach to
cascading failure analysis could lead to better ways to
describe cascading failure on graphs and perhaps new
tools for power system operations and planning.

The “dual graph” methods presented here are some-
what similar to ideas in a couple of recent articles.
Roy et al. [25] propose the “influence model” that
is a tree network that abstractly represent influences
between idealized components. Roy et al. do not sug-
gest how to relate the influence model to directly
represent power system cascading models or data. The
graphical representations proposed in this paper are
similar in general intent, if not in detailed structure,
to the influence model. Also, Carreras et al. [26] find
critical clusters of lines in simulated cascade data using
a synchronization matrix, which determines the critical
clusters as sets of lines that frequently overload in the
same cascade and in a cascade that leads to a large
blackout. This approach does not consider the order
in which the lines overload during the cascade, but
does indicate combinations of critical lines that are
associated with blackouts. In this paper, we suggest
an alternative approach, the line interaction graph, that
shows successive pairs of line outages that commonly
occur in cascading sequences.

In order to keep the graphical illustrations simple,
we primarily use the IEEE 30 bus test case (see
Fig. 1, [27]) to display the dual graph ideas, however
the computational requirements for these methods are
small enough that it would be straightforward to apply
the methods to very large power systems. The applica-
tion to larger power systems remains for future work.
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Figure 1. An illustration of the IEEE 30 bus

case. The line thicknesses indicates power

flow magnitudes. Green circles represent

generators and red triangles show loads,

with sizes proportional to power produc-

tion/consumption.

Figure 2. The simple dual graph for the

IEEE 30 bus case. Gray/dashed lines show

the transmission lines. Blue dots and solid

red lines show the vertices and edges,

respectively, for the dual graph.

A. The simple dual graph

The simplest possible dual graph is formed by cre-
ating a vertex for each transmission branch (line or
transformer) and then adding edges between branch-
pairs that are topologically connected through a bus.
Figure 2 illustrates the simple dual graph for the IEEE
30 bus network.

In order to test the extent to which the simple
dual graph is useful for power systems analysis, a
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Figure 4. Comparison of the cascading

sequences that result from an n � 3 con-

tingency in the IEEE 30 bus system. The

“TC sequence” shows the order of branch

outages (numbers) in the Topological Con-

tagion model. The CFS sequence shows

the outage sequence from the cascading

failure simulator (see Sec. II.A).

simple experiment was run in which we compared the
vulnerability of the IEEE 30 bus network to cascading
failures using two different models of cascading failure.

In the first model we used the simple dual graph,
and simulated its response to failures with a simple
model of cascading (contagion model) in topological
networks, similar to the global cascades model pro-
posed in [4]. For this portion of the experiment we
start by assigning random contagion thresholds to each
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transmission line. These thresholds are drawn from a
uniform distribution U [0.495-0.595] where the limits
are chosen in order to generate large cascades with
sizes that are comparable to those generated from the
cascading failure simulator (CFS) described below. At
each time step, we asynchronously update the status
of each transmission line according to its contagion
threshold and the number of outages neighboring lines.
When the ratio of active (failed) neighbors is larger
than the random contagion threshold of a given node,
this node becomes active as well, and remains that way
until the end of the simulation. We continue polling and
updating the nodes’ statuses until the cascade stops.

In the second model, we use the simple power-
flow based cascading failure simulator (CFS) described
in [15]. To summarize the detailed description in [15],
the model tests the response of a power network to
contingencies using a cascading failure model that
is able to simulate the islanding process. When a
transmission line fails, power flows are re-computed
using the DC power flow model. After a power flow
calculation, relays on each overloaded transmission
line are updated to determine the time at which each
transmission line will trip. Transmission lines that are
more overloaded, as a percent of their limit, trip sooner
than ones that are closer to their limits. The model time
advances to the next time at which a line trip occurs.
If a line outage results in the network being divided
into islands, generation adjustments and load shedding
occur in order to re-balance supply and demand in the
new islands. This process continues until a pre-specified
stopping criteria is reached, or until no overloaded
transmission branches remain.

For both models, we tested the response of the
IEEE 30 bus system to the entire set of n � 2 and
n � 3 line outage contingencies. Note that this test
case is initially n � 1 secure, meaning that cascades
proceed only from multiple (n � k) contingencies.
The results were compared using the cascade sizes
(the number of dependent line outages that follow the
initiating contingency) and a measure of cascading path
agreement between two arbitrary models of cascading.
To measure cascading path agreement between two
models (m

1

and m
2

), following the method in [28], we
do the following. If the Contagion model is m

1

and the
power system model is m

2

, and we are subjecting the
models to a list of contingencies C = {c

1,c2, ...}, the
average path agreement (R) is:

R(m
1

,m
2

) =

1

|C|

|C|X

i=1

|Ai \Bi|
|Ai [Bi|

(1)

where Ai is a set of endogenous events resulting
from contingency Ci in model m

1

, and Bi is a set

of endogenous events resulting from Ci in m
2

. If
two models showed similar cascading failure paths, R
would approach 1. If the models differ dramatically, R
is nearly zero.

Looking at the distribution of blackout sizes (Fig. 3),
the two models look somewhat similar. However, from
the perspective of path agreement the models are very
different. Figure 4 illustrates this difference by showing
the outage sequences that occur after applying one of
the n � 3 contingencies to the IEEE 30 bus network.
Clearly, the cascades propagate along very different
paths. The application of Eq. 1 shows that there is
almost no agreement between the two models for the
n � 2 (R = 0) and n � 3 (R = 0.0008) contingency
lists.

The conclusion is that simple topological models
produce very different results relative to power flow
models. This conclusion is somewhat obvious when
one reflects on the ways that power flows redistribute
when a line outages. For example, one expects line
overloads and outages to propagate along cutsets of
the topological graph, not along the connections of the
topological graph. It may be possible to improve the
simple dual graph method by adjusting the weights,
but the fact that connections can only proceed topolog-
ically is a fundamental limitation of the approach, be-
cause real cascades in power systems proceed through
complicated paths that involve many mechanisms, not
merely topology. The following subsections investigate
methods that make use of more detailed data in order
to produce graphs that are simple enough to reveal
properties of the system in question, but do not neglect
the physical laws that govern flows in a power grid.

B. The n� 1� 1 dual graph

While the simple dual graph better represents the fact
that branch failures are generally more probable than
bus failures, the connections in the simple dual graph
do not capture the electrical interactions in a power
system, through which cascading failures propagate.
Cascades in power systems can propagate by many
mechanisms, such as thermal overloads, voltage col-
lapse, distance relays (particularly backup relays, such
as zone 2 and 3 protection), relay failure, generator
tripping, and operator error, to name a few [29]. In most
of these cases a discrete change in the system, such as
a transmission line outage, causes a threshold to be
crossed somewhere else in the system. This threshold-
crossing may initiate, either directly or indirectly, a
subsequent relay operation, with the potential conse-
quence being a cascading failure. When a power system
is operated securely, single contingencies do not result
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Figure 5. The n � 1 � 1 dual graph for the

IEEE 30 bus test case. Numbers indicate

transmission line numbers. Darker links

(between vertices 30 and 32, in this case)

indicate a larger number of interactions.

in threshold crossings of this sort. However n � 2

contingencies may result in low voltage or high current
conditions. Therefore, a method that could visualize
the ways in which a network is vulnerable to n � 2

contingencies could be a useful tool to grid operators.
Here we propose a dual graph method to visualize and
study the potential influence of line outages on other
line outages, after an initial n� 1 event.

The construction of the “n � 1 � 1 dual graph”
proceeds as follows. First we apply each of the n con-
tingencies in a single contingency list. (Here we study
only transmission line outages, though future work may
include other types of contingencies.) Second we use
line outage distribution factors [30] to compute the
change in flow that would result from each subsequent
line outage. If, after applying the single contingency
c, the subsequent outage of branch i would result in
branch j exceeding its MVA or current flow limits, we
add a directed edge of weight 1 from i to j.

The resulting directed graph for the IEEE 30 bus
case is shown in Fig. 5. Inspection of this graph, and
the underlying data, reveals 2 nodes that are highly
connected to one another (lines 30 and 32). Also, this
dual graph indicates that there are 21 links from line
30 to line 32, and 12 from 32-30. The remaining
links appear in only single n � 1 � 1 combinations.
Branches 30 and 31 have large in degrees, indicating
that many transmission line outages lead to overloads
on this transmission line. However, neither node has a
particularly large number of outward connections (apart

from each other) indicating that cascades may stop at
these buses.

Understanding that some buses have high degree in a
graph of this sort, might provide a signal to operators
that a transmission line is operating too close to its
limits. This type of graph might also be indicator
to a system planner that a particular path requires
transmission investment.

The n� 1� 1 graph is computationally inexpensive
for both DC and AC power flow models of a power
network. Constructing the graph requires n power flow
calculations, and for each of these power flow cases
a subsequent set n � 1 matrix-vector multiplications.
Because of its relative simplicity, the n� 1� 1 graph
could easily be adapted for use in a real-time cascading
failure analysis tool. Given sufficient computational re-
sources, this computation could even be updated during
the early stages of a cascading failure in progress, and
perhaps provide input to an adaptive special protection
scheme.

On the other hand the method has limitations. Just
because a transmission line has a significant chance of
being overloaded (or a bus has a chance of dipping
below its voltage limits), does not mean that a cascad-
ing failure is likely to result. To provide power system
operators or planners with a richer understanding of
cascading failure risk one would need a tool that can
capture more information about simulated or histori-
cally observed cascading outage sequences.

C. The line interaction graph

Here we present an extension of the dual graph con-
cept that captures a larger set of data about cascading
failure sequences.

Consider a set of cascades that have been observed
or simulated. There is a sequence of lines outaging in
each cascade. Given a large number of these sequences,
we can statistically describe how successive pairs of
lines interact in the set of cascades by making a
directed graph called the line interaction graph. The
line interaction graph has a node for each line and
a link with nonzero weight joining the nodes if the
corresponding pair of lines outaged in sequence. The
weight of the link is the empirical probability of the
pair of lines outaging in sequence. It is convenient
to have an additional, fictitious line labeled zero that
represents a cascade stopping. If a line outages and then
the cascade stops, there is a link from that line’s node
to zero.

We consider the case in which each cascade in the
cascading data is a list of lines outaging in a specific
order. For example, one of the cascades could consist
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of outages of lines 3, 4, 7, 2 and then stop, and could
be notated as

3 ! 4 ! 7 ! 2 ! 0. (2)

Let N(n
1

! n
2

) be the number of times that line
n
2

outages immediately after line n
1

in any of the
cascades. Let N

pairs

be the number of successive pairs
of lines in the cascades. Then the weight of the link
from line n

1

to line n
2

is given by

w(n
1

! n
2

) =

N(n
1

! n
2

)

N
pairs

. (3)

w(n
1

! n
2

) is the empirical probability of the ordered
pair n

1

! n
2

occurring in the cascading data. In
particular, the probability that any of the cascades stop
at line n

1

6= 0 is P [n
1

! 0] = w(n
1

! 0).
Each line n

1

, except the zero line, that appears in
some cascade has at least one outgoing link because
the outage of n

1

must either be followed by another
line outage, or stop and be followed by the zero line.
Given that n

1

has newly outaged, the probability of line
n
2

being the next line outaged has empirical probability
proportional to w(n

1

! n
2

):

P [n
1

! n
2

| n
1

] =

w(n
1

! n
2

)X

m

w(n
1

! m)

(4)

In particular, the probability that a cascade reaching
line n

1

6= 0 stops at line n
1

is P [n
1

! 0 | n
1

]. The
probabilities (4) can be used to generate samples of
paths on the line interaction graph that share the same
statistics of ordered pairs as the original cascading data.

Sometimes cascading data is produced in lists of
outaged lines grouped into generations [1], [23], [22].
For example, several lines may be recorded as outage at
the same time due to time being recorded to to the near-
est minute. Or a simulation may produce several line
outages in one pass of the main simulation loop. Line
trips in the same generation cannot be distinguished
and the order in which they outaged is not available in
the data. This can be accounted for by considering all
permutations of the line outages in each generation as
equally probable and accordingly weighting the links
between line outages in that generation, and between
line outages in that generation and the preceding or
following generation. In the example shown below, the
only generations with multiple lines occur in the initiat-
ing line outages of 2 or 3 lines in the first generation. In
order to focus on the subsequent cascading, we choose
to omit the links between the outages in the initiating
lines that arise in the initiating line outages and only
account for their outgoing links to the subsequent,
cascading line outages.

Figure 6 shows the line interaction graph obtained
by simulating the entire set of n � 2 and n � 3 line
outages for the IEEE 30 bus test case. The link weights
are indicated by the darkness of the line. The fictitious
zero line is not shown. It can be seen in Figure 6 that
in this set of cascading data, many line outages often
lead to an outage of line 30. Figure 7 complements
Figure 6 by showing the probability that the cascade
stops at each of the lines. Figure 7 shows that many
cascades stop at line 32 and at line 30.

III. Using Random Chemistry to Identify

many Cascading Failure Sequences

The line interaction graph shows potential as a tool
for providing insight into how cascades propagate in a
power system. However, in order to generate the data
for the line influence graph, one needs substantial in-
formation about plausible cascade sequences. It is pos-
sible to produce a line influence graph using historical
data on cascades. However historical data are limited
in quantity, and cannot be updated to correspond to
different conditions (i.e., it is hard to use historical data
for what if analysis). An alternative is to systematically
generate the data from power system models. However,
doing so requires that one systematically identify, in
an unbiased and efficient manner, large numbers of
plausible cascading failure sequences in a cascading
failure model. Doing so using random search is un-
biased, but computationally prohibitive. For example,
if there are 2896 credible n � 1 contingencies in a
system (the number of branches in the Polish case that

we use in this section) there are
✓

n
2

◆
= 4, 191, 960

n � 2 contingencies, 4.04 ⇥ 10

9 n � 3 contingencies
and 2.92⇥ 10

12 for n� 4. To match normal operating
conditions in a real system, we adjusted the Polish case
to be initially n � 1 secure (as was the case with the
IEEE 30 bus system).

Here we present a new algorithm, dubbed “Random
Chemistry” and first presented in [15], to identifying
large sets of plausible, and blackout-causing cascading
failure sequences. The RC algorithm was originally
proposed by Kauffman [31], who outlined a hypothet-
ical procedure for stochastically detecting small auto-
catalytic sets of k nonlinearly interacting molecules out
of n candidate molecules (hence the moniker “Random
Chemistry”). Eppstein et al. [32] adapted this idea into
an algorithm for finding k epistatically-interacting ge-
netic variations that predispose for disease in genome-
wide association studies.

The RC algorithm, as newly adapted for finding
n�k hazardous contingencies in power grids, proceeds
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as follows. First, large random multiple contingencies
(e.g. k = 80 ) are tested using a simulator until
a contingency (C) is found that results in a large
blackout. Since it is trivial to find a large (non-minimal)
set of outages that cause a large blackout, this step
typically requires very few tries. During the second
step, the algorithm stochastically generates candidate
subsets of C typically 1/2 as large as the previous
set, and tests for large blackouts in that set. If the
subset is found to produce a blackout, the reduced set
is accepted; otherwise a new random subset is tested.
This set reduction process is repeated until the set size
has been reduced to a user-specified size k

max

. Finally,
the remaining set is linearly pruned until a minimal
n � k blackout-causing contingency is identified, for
2  k  k

max

. The algorithm requires only O(log(n))
simulations per hazardous contingency found, which is
orders of magnitude faster than random search of this
combinatorial space.

The RC algorithm is repeated as many times as
desired to obtain large collections of n � k minimal
hazardous contingencies. As long as (i) a uniform
random number generator is used for selecting the
components subsets, (ii) the pruning of components
is done in a uniformly randomly permuted order, and
(iii) the search is terminated when the first minimal
n� k hazardous contingency is identified during prun-
ing, then repeated application of RC search will yield
unbiased collections of n� k hazardous contingencies,
for a given k. Thus, the RC method can efficiently
identify large collections of component outages that
interact to produce cascading failures.

We tested this algorithm using the power flow
model of the Polish grid, which available with MAT-
POWER [33]. This network has has n = 2896 trans-
mission lines. For this initial trial, we defined “large
blackout” as an event that separates a network into sub-
grids (or islands) such that that largest island contains
fewer than 90% of the buses in the network. While this
definition is arbitrary, the assumptions in the simulator
become particularly important as the network divides
into smaller islands, making this a useful stopping
criterion.

In 735,500 successful RC trials, we identified a
total of 336, 25 059, 95 677, and 27 171 unique
n� 2, n� 3, n� 4, and n� 5 blackout-causing contin-
gencies (malignancies), respectively. Doing so required
several orders of magnitudes fewer computations than
would have been needed to find such a broad set of
cascading failure sequences using random search.

We observed a number of interesting trends in this set
of multiple contingencies. For example, we measured
the frequency with which particular transmission lines
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tion function for occurrence frequencies.

(branches) occurred in n�k contingencies that caused
large blackouts. At least for the Polish case that we
tested, it appears that there are a small number of
transmission lines that trigger (in n� k combinations)
far more cascading failure sequences than most. For
the n�2 contingency set, one transmission line occurs
in almost half of the 336 n� 2 malignancies. In each
contingency set a few transmission lines occur in many
different cascading failure combinations, potentially
indicating that these are weak points in the network
(see Fig. 8).

Two important properties of the RC algorithm are
that it is computationally efficient, and that it can easily
be adapted for parallel computing environments. The
identification of a single n�k malignancy requires only
O(log n) cascading failure simulations. In the Polish
grid, it took an average of 48 simulations for each RC
trial. This is orders of magnitude fewer simulations
that would be need to find blackout-causing n � k
simulations using random search. Also, because each
RC trial is independent of previous trials, the method
can make use of parallel computer architectures without
difficulty.

IV. Discussion and Future Work

In this paper we present results from two new
approaches to cascading failure analysis, which are
computationally tractable and have the potential to
improve power systems operations and planning. First,
this paper presents new ways to visualize and analyze
cascading failure data, using three “dual graphs” that
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use nodes to represent transmission lines, and edges to
represent different measures of influence among those
transmission lines. We found that the cascading failure
sequences from the simple topological dual graph did
not align well with those that come from power flow
models of cascading failure. We think that cascading
failure models need to account for power flows and
relay/network thresholds. The n� 1� 1 dual graph, on
the other hand, does account for these thresholds and
can be computed with minimal computational effort.
This dual graph might be particularly applicable to
real-time applications where computational resources
are constrained. The line influence dual graph requires
more data, but provides a much richer picture of how
cascades propagate in a network. Future work will
focus on efforts to extract useful information from
simulation and historical records of line outages. We
suggest that the dual graph approach may open up
new ways to communicate large amounts of data from
cascading failure simulations or empirical line outage
data to power system operators and planners, and
thus enable improved situational awareness and better
investment decisions.

Second, this paper described a new approach to
cascading failure analysis that makes use of a Ran-
dom Chemistry algorithm to efficiently identify large
numbers of cascading blackout sequences. These se-
quences may subsequently be used to provide data for
the line influence graph, or could be used alone to
identify particular components of a power network that
either frequently trigger cascading failure, or frequently
appear in the set of dependent events.

Both methods are inherently computationally
tractable, given that a reasonably efficient model of
cascading failure is available. We conjecture that
dual graph and random chemistry methods could be
useful in the context of power system investment
planning, day-ahead operations planning and real-time
operations.

Along planning time scales, the methods would need
to be adapted to use a suite of network models that that
are representative of the broad range of conditions that
are likely to appear over a known time horizon, rather
than using a single power flow model of the network.
The planning convention in the U.S. electricity industry
is to generate power flow cases that are representative
of high and low demand for each of four seasons. The
random chemistry algorithm could be used to identify
multiple contingencies that trigger large cascades in
one or more of these 8 power flow cases. This set of
8 models would be a good starting point for planning
applications, though eventual adaptation of the methods
to be able to reason about cascading failure risk from

many incremental models for a one-year period would
be valuable. This analysis would reveal the transmis-
sion lines that most frequently appear in hazardous
multiple contingencies. This knowledge could be used
to flag these lines for potential upgrades that would
make them less vulnerable to outages. For example,
a planner might consider upgrading the transmission
line protection on identified high-risk lines, to convert
simple distance or over-current relaying to some sort of
pilot scheme, or even differential protection, which are
generally less vulnerable to spurious trips. The random
chemistry and dual graph methods can be combined to
both identify and evaluate potential options for reducing
cascading failure risk over planning horizons.

Along day-ahead (operational) planning time hori-
zons it should be possible to perform both the random
chemistry and the line interaction dual graph analyses
using the peak load power flow or dynamic model
for the next day. These methods could be used to
identify and adjust operating limits for particular trans-
mission lines that occur frequently in cascading outage
sequences. Similarly, it might be feasible to reduce
the number of scheduled transactions along paths that
have a high in-degree in the dual graphs. Finally, one
might use information from this analysis to determine
when or if to enable remedial action (special protection)
schemes that are not continuously armed.

For real-time operations, it is less feasible to repeat
the random chemistry calculations, since these require
substantial computational effort. However, it may be
possible to simulate thousands of the cascading outage
triggering events identified by the day-ahead RC anal-
ysis a few times per hour, based on updated state data.
The output data from these simulations could be used
to update a real-time line influence graph. Because the
n� 1� 1 dual graph computationally inexpensive it is
feasible to imagine an operator running this calculation
once every few minutes during real-time operations.
These graphical calculations might be useful to help
operators to decide when transmission lines need to be
un-loaded, perhaps by calling a “Transmission Loading
Relief” event. Similarly, this information might be
useful in deciding when to call for additional ancillary
services (reserves or reactive power support), during
operational time frames.

Finally, and perhaps most importantly, we believe
that the rich information that is available in the dual-
graph transformations of cascading outage data could
be used to provide operators and planners with a richer
understanding of how their systems are vulnerable
(or not vulnerable) to random perturbations, including
those from renewable power plants. This type of ad-
ditional insight is likely to have substantial long-term
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benefits beyond those described in these paragraphs.
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