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Abstract—Plug-in electric vehicle (PEV) charging could cause 

significant strain on residential distribution systems, unless 
technologies and incentives are created to mitigate charging 
during times of peak residential consumption. This paper 
describes and evaluates a decentralized and ‘packetized’ 
approach to PEV charge management, in which PEV charging is 
requested and approved for time-limited periods. This method, 
which is adapted from approaches for bandwidth sharing in 
communication networks, simultaneously ensures that 
constraints in the distribution network are satisfied, that 
communication bandwidth requirements are relatively small, and 
that each vehicle has fair access to the available power capacity. 
This paper compares the performance of the packetized 
approach to an optimization method and a first-come, first-
served (FCFS) charging scheme in a test case with a constrained 
500 kVA distribution feeder and time-of-use residential 
electricity pricing. The results show substantial advantages for 
the packetized approach. The algorithm provides all vehicles 
with equal access to constrained resources and attains near 
optimal travel cost performance, with low complexity and 
communication requirements. The proposed method does not 
require that vehicles report or record driving patterns, and thus 
provides benefits over optimization approaches by preserving 
privacy and reducing computation and bandwidth requirements. 
 

Index Terms—Communication systems, plug-in electric 
vehicles, smart charging 

I.  INTRODUCTION 
LUG-IN electric vehicles (PEVs) have the potential to 
facilitate a transportation future that is less dependent on 

liquid fossil fuels. However, as PEV market penetration 
increases, vehicle charging could strain aging power delivery 
infrastructure. A number of recent papers have shown that 
increases in PEV charging could have detrimental impacts on 
medium and low voltage distribution infrastructure (e.g., 
[1],[2]), particularly where PEV adoption is highly clustered 
[3]. With mass-produced PEVs coming to market and a range 
of charging standards (AC Levels 1-3) established [4], it is 
increasingly important to understand and mitigate negative 
impacts that PEV charging might have on distribution system 
components, such as underground cables and transformers. 

Implementing effective charge management (CM, also 
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known as smart charging) methods is one step to facilitate the 
smooth integration of PEVs. Several previous studies (e.g., 
[1],[2]) show that with effective CM schemes it is possible to 
support large numbers of electric vehicles even with 
constrained electric power infrastructure. In many cases it is 
also possible for PEVs to not only avoid negative impacts on 
the power grid, but also to provide grid services, through 
Vehicle-to-Grid (V2G) technology (e.g., [5],[6]). 

The CM and V2G control schemes that have been proposed 
in the literature, or in industry, generally fall into one or both 
of the following categories: 
1. Centralized optimization or control methods in which 

each vehicle submits information to a central authority, 
which in turn solves an optimization problem that 
produces a charging schedule for each vehicle [7]-[12].  

2. Decentralized methods, in which either utilities set a 
pricing scheme (e.g., a two-period time-of-use price) and 
vehicles self-schedule based on those prices [13]-[15], or 
market-based scheme that generate prices from bid or 
historical information, to which vehicle charge 
management devices respond [5],[16]-[20]. 

These two approaches have a variety of advantages and 
disadvantages.  

Centralized schemes have the advantage that they produce 
optimal outcomes by minimizing costs and avoiding constraint 
violations in the distribution system. However, 
optimization/control methods require that vehicle owners 
provide information (e.g., willingness to pay or anticipated 
departure times) to a central authority and give up at least 
some autonomy over the charging of their PEV. While the 
load-serving entity would likely compensate the vehicle owner 
for this loss of control with a reduced rate for electric energy, 
reduced autonomy could be an impediment to the adoption of 
CM schemes. In addition, vehicle owners are unlikely to know 
in advance their exact travel schedule, which complicates the 
problem. 
 Dynamic pricing schemes, such as reduced rates for 
nighttime charging, do not have these disadvantages; drivers 
are free to choose how to respond to change in prices. 
However, because not all vehicle owners will be price 
responsive, price-based schemes do not guarantee that vehicle 
charging will not produce overloads. In fact, under some 
conditions, time-differentiated pricing could produce new load 
peaks that increase, rather than decrease, aging in the 
distribution infrastructure [2]. The method in [21] seeks to 
combine the benefits of centralized and dynamic pricing 
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schemes, but has the disadvantage that customers need to 
declare their willingness to pay for electricity in order to set 
the parameters for the bidding system. One major impediment 
for purely price-based schemes is the concern expressed by 
many utilities that true real-time pricing schemes would not be 
acceptable to electricity customers [22].  

The stochastic nature of charging behavior is particularly 
important to highlight. PEV arrival and departure times vary 
substantially among different owners, days, and times-of-day. 
While aggregate load for a region can be predicted with some 
accuracy, distribution feeder loads are less predictable, due to 
the smaller number of customers over which to average. 
Distribution system load variability and uncertainty will grow 
even further with an increase in distributed renewable 
generation. Vehicle CM schemes that do not adapt well to this 
uncertainty are unlikely to be successful.  

The combination of random supply (available capacity on a 
feeder, for example) and random demand for PEV charging is 
analogous to the problem of sharing a constrained channel in 
multiple access communication systems. This paper proposes 
an approach where PEV charging is completed over multiple 
short intervals using ‘charge-packets,’ which are analogous to 
discrete ‘data packets’ that revolutionized communications. 
Our approach leverages a probabilistic automaton, the design 
of which originated in the decentralized control of node 
activity in wireless sensor networks [24]. While the packetized 
approach could be applied in a variety of power system 
contexts, this paper focuses on the problem of ensuring that 
PEV charging does not result in overloads in residential 
distribution components (e.g., transformers or underground 
cables). Simulation results (Sec. V) show that the inherent 
randomness in vehicle charging enables constrained resources 
to be fairly and anonymously shared.  

Our approach builds on previous work by the authors and 
others applying communication algorithms to the problem of 
PEV charging. We extend our prior work [29]-[31] by 
simulating realistic travel demand behavior, and by comparing 
the packetized approach with other approaches to CM. 
Another communication-inspired algorithm is proposed in 
[25], which uses a more complicated communication 
algorithm, in order to treat PEV charging as a continuously 
controllable variable. Unlike many proposed smart charging 
methods (e.g., [1],[21]), the charge-packet method does not 
require drivers to estimate their future departure times.  

II.  THE COMMUNICATION CHANNEL ANALOGY 
A.  Characteristics of Modern Communications 

Modern communication systems are characterized not only 
by information that is digital in format but also by the way that 
data are sent in multiple discrete packets, each of finite 
duration. Packet communications can occur over dedicated or 
shared channels, the latter type we view to have analogous 
issues to PEVs sharing the power distribution system. In the 
communications field, techniques that manage access to 
shared channels (or bandwidth) are collectively known as 
media access control (MAC) protocols and have as an 

objective the efficient use of the bandwidth resource 
(measured by channel throughput) for the load placed on the 
system [26]. This objective is analogous to matching the 
demand for power to the available capacity of a feeder, to 
ensure that high loads do not damage the infrastructure, or 
trigger instabilities (e.g., voltage collapse). A second objective 
for MAC protocols is ensuring that latency does not exceed 
the user’s requirements; we view the latency objective to be 
analogous to PEVs receiving the requisite charge in the 
requisite time, which is a primary concern to PEV owners. 
The packetization of data allows both of these conflicting 
objectives to be addressed simultaneously in communication 
systems. 

B.  Packetization of PEV Charge 
Why is PEV home charging a candidate for packetized 

delivery? Firstly, a 5-8kW AC Level 2 PEV charger is likely 
to be the highest power load in a home; if many chargers in a 
neighborhood were to run simultaneously, substantial 
infrastructure degradation could result, particularly in older 
distribution systems. In addition, most PEV owners with Level 
2 chargers will not need to charge their vehicles immediately 
upon vehicle arrival at home. Given fast charge rates, there is 
likely to be more than sufficient time overnight to bring a 
PEV’s battery to the desired state of charge (SOC) for the next 
day’s driving. In short, it is typically not necessary that PEV 
charging be continuous from start to finish. 

Packetized charging breaks the required charge time into 
many small intervals of charging (i.e., ‘charge-packets’). For 
example, 4 hours of Level 2 charging could be accomplished 
with 48, 5-minute charge-packets. A PEV (or its charging 
station) would request the authorization to charge for the 
packet’s duration. A charge-management coordinator device at 
the distribution substation would assess local conditions and 
determine whether additional load on the system can be 
accommodated. If allowed, the PEV will charge for the 
duration of the packet and then submit new requests for 
subsequent packets until the battery is fully charged. If 
charging cannot be accommodated, the PEV resubmits a 
request at a later time.  

The accommodation or denial of charging is analogous to 
the successful transmission of a data packet or a packet 
collision, respectively, in random access communication 
systems in which users compete for available bandwidth. 
Benchmark MAC methods developed for random access 
channels include Aloha, Slotted-Aloha and Carrier Sense 
Multiple Access (CSMA) [26], each of which requires very 
little (if any) overhead communications between the source 
and loads in the system. The MAC techniques provide a 
predictable throughput (i.e., utilization of bandwidth) for a 
given stochastic load by the network as a whole. However, 
individual user load is not managed by MAC protocols and 
thus a different type of control is needed if we wish to 
leverage packetization for the PEV charge management 
problem.  
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III.  A PROBABILISTIC AUTOMATON FOR PEV CHARGE 
MANAGEMENT 

A.  Automaton Design 
The problem of managing, in a distributed manner, the 

individual activity rates (i.e., load) for entities in a large group 
is similar to the control of active nodes in a wireless sensor 
network and to the PEV CM problem. For the sensor-network 
problem, N-state probabilistic automatons have been proposed 
that are both simple to implement on computationally 
constrained hardware and require minimal communications 
for control [24, 27, 28]. Our earlier work, [24] and [28], 
illustrated the ability of this approach to control participation 
for a large range of nodes and activities levels in a manner that 
ensured equity of participation among nodes. For PEV 
charging, we leverage this automaton design, of which a 
simple version (N=3) is presented in Fig. 1. 

As shown in the state diagram (Fig. 1), if the node (sensor 
or PEV) is in its middle state, it will transmit during a 
particular epoch (time period) with probability P2. In the PEV 
application, this “transmission” corresponds to the PEV 
requesting a packet of charge for a fixed length of time (or 
epoch). If the request can be supported by the infrastructure, 
the vehicle is allowed to charge for one epoch. In the 
communications context this would mean being “rewarded” 
by the channel, through successful transmission of the data. 
With a successful request, the state machine moves to the next 
higher probability state (P1) and transmits during the next 
epoch with probability P1 > P2. If the request is not successful, 
the PEV would not charge for the epoch, would move to the 
next lower probability state, and would request at the next 
epoch with probability P3 < P2. Prior work demonstrated that 
this automaton approach can adapt to scenarios where the 
distribution capacity varies over time [29].  

For fair and consistent treatment across all PEVs, each 
user’s automaton would have the same design. However, in 
order to ensure that drivers who need to charge their vehicles 
more quickly are able to do so, the design can be adjusted to 
give such vehicles a higher priority. In our design, each 
charger would have an “urgent” mode [30], which, when 
selected by the user, increases the probability of charge 

requests, and also the price of electricity. As implemented in 
this paper (see Fig. 1) ‘urgent’ vehicles request charge at each 
epoch with P1=1 [31].  

B.  Possible Implementation Approaches 
Key advantages of the proposed packet-based CM 

approach are that (1) the scheme can be used to manage 
constraints anywhere in a distribution system, (2) the 
communication requirements are minimal, and (3) customer 
privacy is maintained. Here we discuss these advantages by 
describing possible ways to implement the required 
communications (broadcast vs. point-to-point 
communications) and various power system constraints that 
the algorithm could be used to address. 

The packetized method can be implemented to mitigate 
overloads at a variety of locations within a distribution system, 
such as avoiding thermal overloads in underground cables, 
low-voltage service transformers, or medium voltage 
distribution transformers, or avoiding under-voltage 
conditions in the network, or (using a hierarchical design) any 
combination of these constraints. In each case, a charger 
automaton would communicate with an aggregator responsible 
for managing a particular constraint. For the case of medium 
voltage constraints, the aggregator could be located at the 
distribution substation. For the case of service-transformer 
constraints, the aggregator would likely be located at the 
transformer. The only data that would flow from the PEV 
charger to the aggregator would be charge-packet requests. 
The aggregator would respond to requests only based on 
available capacity. In each of these cases, communications 
could occur over Advanced Metering Infrastructure systems, 
which typically have very low communications bandwidth and 
high latencies, emphasizing the importance of a scheme that 
makes limited use of this bandwidth. 

It is possible to implement communications for the 
packetized method with either one-way (simplex) or two-way 
(duplex) data flows. In the duplex case, the aggregator would 
respond to each request individually with either an approval or 
denial. In the simplex case, the aggregator would broadcast the 
state of the resource (either overloaded, or not-overloaded) 
and chargers would make their request locally by merely 
randomly “listening” to the broadcast signal. The latter version 
has advantages in terms of privacy, as the transformer is blind 
to who is receiving permission to charge. 

These approaches represent conceptual extremes on how 
the packetized CM technique could be implemented. Note that 
combinations of these schemes could be employed 
simultaneously. For example, a PEV charger might send 
requests to an aggregator at the substation only if a service 
transformer’s broadcast signal indicated that there was local 
capacity available. Because vehicle chargers using the 
packetized method only charge when there is sufficient 
capacity in the system, our approach ensures that PEV loads 
will not cause overloads in components that are monitored by 
the system.  

C.  Illustrative results for a service transformer  
To illustrate the operation of our approach, this section 

 
Fig. 1. A three-state (N=3) automaton where P2 corresponds to a lower 
probability of PEV charge request than P1, and P3 to a lower probability than 
P2. In case of charge urgency (urg=1) the state machine will stay at P1, but if 
there is no charge urgency by driver’s call (urg=0), and the power 
transformer was congested (cong=1), i.e. a charge request was denied to 
avoid transformer overload, the PEV state machine will go to a state with 
lower probability. If charge urgency was set by the driver (urg=1) the state 
machine will go to P1 with the highest probability. 
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demonstrates how the charge-packet method would operate for 
the case of a constrained low-voltage service transformer. In 
this example scenario, a transformer has a peak load limit of 
30kVA and serves 20 homes and 10 PEVs. The baseline 
residential load patterns were the same as used in [2], scaled to 
an average of 1 kVA per home, with a 0.9 power factor. The 
PEV travel patterns were randomly sampled from travel 
survey data [32] for New England, as described in [2]. Each 
vehicle was assumed to charge using AC Level 2 charging 
rates (7 kW at 1.0 power factor). The electric vehicle 
characteristics roughly reflect those of the GM Volt, with an 
efficiency of 4.46 km/kWh in electric mode and 15.7 km/L in 
gasoline mode, and a 13 kWh usable battery capacity. While 
all of the simulation results in this paper are for series Plug-in 
Hybrid Electric Vehicles (PHEV), the packetized method 
could just as easily be applied to pure battery electric vehicles 
(BEV). However, for the BEV case, the travel survey data are 
likely to be a less accurate representation of travel behavior, 
since BEV drivers may adjust their travel patterns given the 
reduced range of the vehicle. For this reason we simulated 
PHEVs rather than BEVs. 

In this paper, we assumed that drivers can decide to choose 
between urgent or non-urgent charging modes and that, once 
chosen, this choice is constant during the day (the simulation 
duration). In the urgent mode, the vehicle requests charge 
regardless of the price of electricity, and its automaton stays at 
P1 (the highest probability). In the non-urgent mode, the 
vehicle requests charge only during off-peak hours, and its 
automaton can go to lower states in case of charge denial. 

For our first illustrative example, we used the following 
assumptions. First, all PEVs operate in the non-urgent 

charging mode, and thus do not request charge during peak 
hours (8 a.m. to 8 p.m). Second, each PEV charger was 
managed with a three-state (N=3) automaton as illustrated in 
Fig. 1, with request probabilities of P1=1, P2=0.5 and P3=0.25. 
Finally, time epochs were set to 15 minutes.  

Fig. 2 shows the simulation result for this example. The top 
panel shows the transformer load with and without PEV 
charging. While the load approaches the 30kVA limit, the 
constraint is satisfied over the entire period. The middle panel 
shows the status of each PEV over the day, with white bands 
showing the randomly scattered 15-minute periods during 
which vehicles were charging (note that vehicles are sorted by 
the time at which they arrive at home for evening charging). 
The lower panel shows the changing automaton states over the 
day, illustrating that during off-peak hours, the automatons are 
more likely to sit in the lower state (P3). This is notable since 
these states are determined locally based only on the success 
of the vehicle’s most recent charge request.  

IV.  COMPARISON CHARGE MANAGEMENT SCHEMES 
The results in Fig. 2 illustrate how the decentralized charge-

packet CM approach can be used to keep transformer loads 
below a desired limit. This section describes two comparison 
schemes that were used to evaluate and illustrate the relative 
merits of the packetized approach. As stated in Sec. III, the 
results that follow assume that all vehicles are series PHEVs, 
which use gasoline after their batteries are fully depleted.  

A.  First-come, first-served charge management 
A simpler decentralized approach to the CM problem would 

be a first-come, first-served (FCFS) method in which vehicles 
are allowed to charge as soon as they arrive home and can 
continue to charge, so long as there is sufficient capacity 
available. As we will show, this approach puts vehicles 
arriving home at a later time at a disadvantage, should there be 
a capacity constraint in the system. Like the charge-packet 
method, this approach is largely decentralized, is low in 
computational complexity, ensures that charging will not 
exceed the feeder capacity, and can be implemented with 
equivalent limited communications. In our FCFS 
implementation, PHEVs are allowed during both peak and off-
peak hours. Once charging begins, it continues until one of the 

 
Fig. 3. Sample illustration of the FCFS charging method. (a) Load curve (b) 
PEV status using the same gray-scale codes as in Fig. 2. 

 
Fig. 2. Illustration of the charge-packet method for a service transformer with 
a 30kVA limit. (a) Load curve, showing the residential and the aggregate 
transformer load. (b) PEV status with gray shades indicating: A: PEV is 
away, HN: PEV is at home but not requesting for charge (either the battery is 
full, or it is during peak hours), HM: PEV requested a charge packet, but was 
denied to avoid transformer overload (charge mitigation), HC: PEV is at 
home and charging. (c) PEV automaton state number with the gray shades 
showing each automaton’s state at the end of the epoch.  
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following occurs: the battery is fully charged, the PHEV 
leaves home, or the network (transformer or feeder) becomes 
overloaded by an increase in non-PHEV load. In the latter 
case, the system randomly chooses a vehicle to stop charging. 

Fig. 3 shows results from the FCFS approach for the same 
10-vehicle scenario as in Fig. 2. In this scenario, vehicles have 
more continuous charging patterns (as seen by the continuity 
in the white bands in the lower panel). Because time-of-use 
prices are not considered by PHEVs in this method, they 
charge regardless of the time of day, as long as the transformer 
is not overloaded. In this case, vehicles that arrive later in the 
day or are initially denied charge are at a disadvantage 
because they cannot start charging until there is sufficient 
capacity to support additional PHEV charging. As a result 
PHEVs 9 and 10 do not start charging until the early hours of 
the morning (Fig. 3(b)). In contrast, the randomized nature of 
the packetized approach solves this fairness problem by 
requiring vehicles to request new packets at each epoch, 
providing vehicles with equal access to the resource, 
regardless of arrival times. In the packetized simulation (Fig. 
2), vehicles 9 and 10 charge during several intervals during the 
night, with the first packets shortly after vehicle arrival. In Fig. 
3, PHEVs 9 and 10 do not get any charge until after 1 and 2 
am respectively. The extent to which vehicles get equal access 
to charging is quantified and compared in Sec. V (see Fig. 7).  

The FCFS charging scheme is a useful comparison scheme 
for two reasons. First, it illustrates how much charging costs 
increase, if PHEVs are not responsive to time-of-use prices, 
having the same travel pattern as in packetized charging 
method. Second, the FCFS method illustrates the potential of 
the packetized approach to provide equal access to constrained 
resources for all PHEVs.  

B.  Optimal Charge Management 
The second comparison method is a centralized optimal 

CM scheme, which we use to identify the minimum cost 
charge scenario for each travel pattern and compare that cost 
to that of the packetized case under a two-rate, time-of-use 
residential tariff. A critical distinction for the optimal case is 
that the model assumes that PHEV charge rates can be 
continuously controlled between zero and the full charge rate. 
Also, and significantly, the travel behavior for each user must 
be known in advance for the optimization scheme. As in the 
other cases, all vehicles were assumed to be serial plug-in 
hybrid electric vehicles, with gasoline used only after the 
usable battery capacity was expended.  

The optimization problem formulation is a mixed integer 
linear programming model based on the approach in [12]. 
Only the objective function and our modifications to the 
model are described here; the reader is referred [12] for further 
details.  

The objective in the optimization method is to minimize the 
retail costs to vehicle owners associated with traveling the 
miles described in the travel survey data. Because the vehicles 
are PHEVs, and the homes are charged for electricity using 
time-of-using pricing, there are three fuels that can be used for 
charging: on peak electricity, off peak electricity, or gasoline. 
The resulting objective (cost) function is given in (1):  

 !! =
!! ! ∙ ! !, ! ∙ ℎ

!!
+ !! ∙ !!"(!, !)!!

!

!!!

!

!!!
 (1)  

where !!(!) and ! !, ! !are the price of electricity and the 
charging power of vehicle ! at time t; h is the charge epoch 
length; !! !is the overall efficiency of the charging system 
(!! = 0.85); !! = 1.06 $/L is the price of gasoline; !!" !, !  
is the distance traveled after the battery was depleted (Charge 
Sustaining, CS mode); !! = 15.7 km/L is the CS mode 
vehicle efficiency; and T and N are the number of epochs and 
vehicles, respectively. In our implementation, one-hour epochs 
were used (ℎ = 1), and ! !, ! !was a continuous variable that 
varied between 0 and 7 kW. In order to obtain consistent 
results, the following two constraints were added to the model 
in [12]: 
 

! !, !
!

!!!
+ !!(!) ≤ !!!!!!∀! = 1,… ,! (2)  

 ! !, ! ≤ ! !, ! − 1 !!!!∀!, !:! 
!!!"!(!, !) = !!"!(!, ! − 1) = 0!&!!!(!) = !!(! − 1) 

(3)  

where !!(!) is the total residential load at time !, ! is the load 
limit for the transformer or feeder, and !!"!(!, !) is the total 
distance traveled by vehicle v at time t. Constraint (2) ensures 
that the transformer is not overloaded, and (3) forces PHEVs 
to charge as soon as possible, so long as the total cost is not 
affected. In other words, if the total distance traveled by 
PHEV ! is zero in two consecutive time slots (if the PHEV is 
plugged in at home) and the price of electricity is the same at 
time t and t-1, the charging power of vehicle v’s battery should 
be greater at the earlier time slot. 

Fig. 4 shows results for this optimal charging scheme for 
the 10-PEV case considered in Figs. 2 and 3. As a result of 
allowing vehicles to charge at any rate, the approach chooses 
charge rates that are lower than the full Level 2 rate. This type 
of “Unidirectional V2G” [5] has advantages in terms of more 

 
Fig. 4. Illustrative results for optimal charge management. (a) Load curve. (b) 
PEV status with gray levels showing the amount of energy given to each PEV 
at each hour. In the grey-level bar, “A” shows the time when the PHEV is 
away. When at home, hourly charge quantities vary between 0 and 4.64 kWh, 
which is the maximum quantity delivered in this example. 
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refined control, but requires additional communication and 
coordination. As expected, optimal CM fully utilizes the 
transformer capacity during off-peak hours, but only if travel 
plans are fully known. The other two methods also keep loads 
below the power limit, but with somewhat more variability. 

V.  RESULTS 
This section compares the packetized approach to the optimal 
and FCFS cases, and to variants of the packetized approach, 
for a larger number of homes and vehicles. Specifically, we 
simulated a 500 kVA medium voltage transformer serving 320 
homes, each with 1 kVA average load. Each home has two 
vehicles [33] (i.e., 640 vehicles in total), either or both of 
which could be a PHEV depending on the PHEV penetration 
level. The number of homes was selected such that the peak 
residential load was below the transformer’s rated load. We 
assumed that customers were charged for electricity according 
to a two-rate, time-of-use residential tariff in which the peak 
(8 a.m. to 8 p.m.) electricity rate is πe(t)=$0.14/kWh and the 
off-peak rate is πe(t)= $0.10/kWh. These assumed values are 
representative of (though less extreme than) current retail 
time-of-use rates in the Northeastern US [34]. For the 
packetized case, we assumed that vehicles in urgent charging 
mode were charged the peak price ($0.14/kWh). It is 
important to note that this $0.04 difference between urgent 
and non-urgent rates is likely conservative, since the cost to 
utilities of providing non-urgent charging is likely to be only 
slightly higher than off-peak wholesale energy costs, which 
are frequently $0.02-$0.03/kWh in the Northeastern US [35].  

In order to obtain a distribution of outcomes over a variety 
of likely travel patterns, 100 unique vehicle travel patterns 
were randomly selected from the survey data (see [2] for 
details of this Monte-Carlo model). 

A.  Comparing packetized charging to optimal and FCFS 
charge management 

In this section the packetized approach is compared to 
results from the FCFS and optimal method for the larger 
scenario. For the packetized method, we modeled a two-state 
automaton, with request probabilities of P1=1 and P2=0.5. 
Furthermore, vehicles were set to urgent mode (for the 
packetized approach) based on the solution from the 
optimization: if PHEV v charged during peak hours in the 
optimization results,  v was set to urgent charging mode. 
Essentially this reflects the assumption that drivers were able 
to estimate their need for urgent charging.  

We simulated three different levels of PHEV penetration: 
12.5% (N=80), 25% (N=160) and 50% (N=320). Note that 
these high penetration levels are relatively unlikely in the near 
term for the aggregate vehicle-fleet in most countries. 
However, it is not unlikely that some residential 
neighborhoods could have PEV penetrations that are 
substantially higher than that of aggregate. As a result of this, 
and the fact that temporal patterns in non-residential loads 
differ from residential patterns, we assume that the simulated 
PHEVs do not impact the two-tier time-of-use price. We also 
assume that the aggregate system load curve, which would 
include commercial and industrial customers, is different from 
the residential load shown in Fig. 5, which shows the baseline 

and total load for 25% PHEV penetration (160 PHEVs) for 
each CM scheme. In order to make a clear comparison, we 
chose 1-hour time slots for the FCFS and optimization 
method, and 1-hour request intervals and packet lengths (i.e., 
epochs) for the charge-packet method. Fig. 5 shows that the 
PHEVs in the charge-packet case use slightly more peak hour 
charging, than in the optimization case, which increases the 
overall costs for the charge-packet method somewhat. 
However, the presumption is the unrealistic requirement that 
the central optimization approach can obtain perfect 
information about travel plans. What is notable is that the 
charge-packet scheme keeps loads below the limit, with costs 
that are nearly optimal as the load presented to the system is 
adjusted over time and distributed across PEVs in the system.  

We compared the average total travel cost per PHEV over 
100 one-day Monte Carlo simulations. We assigned each 
vehicle a random travel pattern from the survey data. The 
same vehicle-travel pattern combinations were used 
identically for each scenario, to ensure a fair comparison. The 
results for two different PEV penetrations (12.5% and 50%), 
and two different battery capacities are shown in Fig. 6. The 
gasoline, off-peak and on-peak electricity costs are shown 
separately. From Fig. 6, we can see that the total travel cost of 
the charge-packet method is slightly more than that of the 
optimization method, but much less than the FCFS method. 
The charge-packet costs are slightly greater because urgency 
settings were constant during the day, based on the realistic 
assumption that drivers are not perfect optimizers. The FCFS 
method is more costly because in this case drivers do not 
differentiate their charging based on the price of electricity. 
The result is that in the FCFS method, vehicles consume more 
peak-hour electricity than in the other methods. One exception 
is the case of 50% penetration and 24 kWh batteries, where all 
charging methods use the entire transformer capacity during 
off-peak hours, but the optimization method can optimally 
allocate charging to those PEVs that cannot get peak-hour 
charging. In other charging methods, some PEVs that are not 
capable of receiving peak electricity (because of not being 

 
Fig. 5. Daily load curve showing non-PEV residential load and the aggregate 
load with 25% PHEV penetration. 



 7 

home) do not get enough charge overnight, and must use the 
most expensive fuel, gasoline. It should be noted that in our 
simulations peak electricity at $0.14/kWh is still cheaper than 
gasoline in terms of $/km travel.  

Generally, in the higher PEV penetration scenarios, there is 
insufficient off-peak electricity to allow all vehicles to fully 
charge their batteries, resulting in more peak electricity usage 
for the optimization and packetized scenarios. Because of this, 
increased PEV penetrations resulted in a slight increase in 
travel costs for the optimization and packetized cases. For 
example, in the 12.5% PEV penetration case, vehicles can use 
more off-peak electricity than in the 50% PEV penetration 
case, where peak electricity is used more. 

As one would expect, the results indicate that larger battery 
capacities result in reduced use of the most expensive fuel, 
gasoline, and thus reduce travel costs. However, the impact of 
the larger batteries is different in low and high PEV 
penetration cases. In the low penetration case, more off-peak 
electricity can be used for the larger battery as more 
transformer capacity is available; in the high penetration case, 
the transformer capacity is exhausted for both the 13 kWh and 
24 kWh battery cases during the off-peak hours, making the 
benefits of larger batteries less clear. 

Most importantly, these results show that the cost of using 
the packetized method is only 0.9% to 5.2% greater than what 
we found for the optimal CM case (as opposed to 3.1% to 
14.1% for the FCFS CM scheme). The charge-packet method 
requires much less information from the PEV owner (only the 
choice of an urgency setting) and requires far less two-way 
communication than would be required to implement 
centralized optimization method. In summary, we find that the 
charge-packet method can achieve near optimal costs, while 
preserving driver privacy and being robust to random changes 
in travel behavior.  

B.  Comparing variants of the charge-packet method 
The automaton used in the packetized PEV charger allows 

PEV charging to adapt to reduce the impact on the distribution 
system, such as overloaded transformers or feeders. However, 
different automaton probabilities and structures will change 

the performance of the charge-packet method, particularly 
with respect to the burden on the communications 
infrastructure. To investigate the performance of the charge-
packet method, we introduced the idea of differentiating 
between charge-packet lengths, i.e., the time epoch a PEV is 
given permission to charge, and request intervals, i.e., the time 
epoch between two requests for charge. 

We simulated the charge-packet method with different 
automaton probabilities, packet lengths (5-minute and one-
hour), and request intervals (5-minute and one-hour). The 
results were compared across three metrics: (1) average total 
cost, (2) a measure of the extent to which the method provided 
each vehicle with equal access to the charging resources, and 
(3) the number of messages transmitted by the PEVs or the 
transformer, per vehicle-day, assuming the bi-directional 
communication (duplex) case is implemented (see Sec. III.B).  

One of the problems observed with the FCFS charging case 
(Sec. IV.A) was that vehicles that began charging earlier than 
others, before a period in which charge mitigation occurred 
(typically early evening hours), were not required to stop 
charging when new vehicles arrived. As a result, vehicles that 
arrived later in the day frequently were not allowed to begin 
charging until capacity in the system was released, effectively 
giving them “less equal” access to charging resources. In order 
to measure the extent to which vehicles were given equal 
access to grid resources under different scenarios, we defined 
an Equal Access Metric (EAM) to assess the “fairness” of 
each method. For this purpose, we find the probability of 
charge mitigation for each vehicle v, !! ! , by dividing the 
number of time slots that the PEV charge request is denied by 
total number of time slots that the PEV is requesting charge 
from the transformer. PM was computed only for off-peak 
hours, when all vehicles were requesting charge. Given the 
standard deviation of !!(!) over all v, ! !! , EAM was 
calculated as follows: 

 !"# = 1 − ! !! . (4) 

! !!  ranges between 0 and 1, which means that EAM has the 
same range. Therefore, a method with perfectly equal access 
will have EAM = 1, and lower values of EAM indicate that 

 
Fig. 6. Average total travel costs in 100 Monte Carlo simulations, showing gasoline, peak and off-peak electricity costs separately in four case studies with 
different PEV penetrations and battery capacities (bars show the average and black lines show 10th to 50th and 50th to 90th percentile) 
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some vehicles are given more access than others. The rationale 
for this metric is that as long as all the PEVs are mitigated 
with the same probability (i.e., the same ratio of mitigation to 
total requests) the method maintains its fairness.  

Communication burden was measured by counting the 
number of messages exchanged over the communications 
network per vehicle per day. Following the two-way 
communication system design, we assumed that each charge 
packet request requires one message submission to the 
aggregator. If the PEV gets a reply (one message), this means 
that the request is approved; otherwise the charge request is 
denied.  

Fig. 7 shows these three metrics, for three different charge 
time-interval combinations and four different state machines, 
along with results for the FCFS charging method. Time-
interval combinations are defined using the notation t1/t2, in 
which t1 is the interval of times between requests and t2 is the 
length of the charge packet, both in minutes. The three time-
interval combinations compared were 60/60, 5/60 and 5/5, and 
the state machines were SM1: {P1 = 1, P2 = 0.5}, SM2: {P1 = 
1, P2 = 0.5, P3 = 0.25}, SM3: {P1 = 0.8, P2 = 0.4} and SM4: 
{P1 = 0.8, P2 = 0.4, P3 = 0.2}. As expected, smaller request 
intervals and charge-packet lengths reduced charging costs, 
but increased communication costs. The 5/60 gives about the 
same travel cost as 5/5, but at the expense of fairness (reduced 
EAM). It is possible that excessively frequent on/off cycles 
could have adverse effects on the battery or charging systems. 
If this was the case, the 5/60 method could be preferable, 
given that the increase in cost is negligible. Note that 5/60 
outperforms 60/60 in terms of equal access. 

The results also suggest that using state-machines with N=3 
rather than N=2 states, or with lower transition probabilities, 
can substantially reduce the burden of CM on the 
communications system. This notion agrees with the results 

obtained previously for automaton control applied to wireless 
sensor node participation [24]. However, these changes also 
result in small increases in travel costs. If communications 
bandwidth is not a constraint, the 5/5 charge-packet is superior 
in terms of both total cost and equal access.  

VI.  CONCLUSIONS 
This paper draws similarities between the problem of 

managing the charging of electric vehicles and that of 
providing multiple devices with access to a bandwidth-
constrained communications channel. We propose to treat 
PEV charging as a random access problem where charge is 
delivered through many ‘charge-packets’. As with random 
access communication channels, the packetization of charge 
allows distribution system objectives (i.e., efficient use of 
available resources without overloading the network) and 
customer objectives (reducing travel costs) to be achieved 
simultaneously. Leveraging this approach, this paper presents 
a new decentralized, automaton-based charge management 
strategy, which preserves users’ privacy more than many 
existing charge management schemes. Simulations of 
packetized charging in a constrained residential distribution 
feeder indicate that the cost increase of our method over an 
omniscient centralized optimization method (which is 
untenable in its information requirements) is only 0.9% to 
5.2%. However, in comparison to the optimal approach, the 
charge-packet technique can be implemented with first-
generation low-bandwidth advanced metering infrastructure. 

While the simulations in this paper are for plug-in hybrid 
electric vehicles charging in a residential distribution network, 
the packetized method could be adapted and applied to other 
thermal or battery storage loads. Battery electric vehicles are 
likely to have somewhat different charging and travel 

 
Fig. 7. Comparison of FCFS charging and variations of the charge-packet method. (Top) Average total costs over 100 Monte Carlo simulations, with 
shades indicating gasoline (black), peak (gray) and off-peak (white) electricity costs. (Middle) The extent which consumers have equal access to the 
available capacity. (Bottom) Communication burden for the various methods. t1 and t2 in t1/t2 (e.g., 60/60) show the request interval and the packet 
length in minutes, respectively. See the text for definitions of the state-machine probabilities SMi. 
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characteristics than PHEVs: BEV owners would probably take 
fewer very long trips, and are likely to request the “urgent” 
charging mode more frequently. Similarly, the method could 
be adapted to the management of thermal loads, such as 
HVAC and water heating. Future work will investigate these 
adaptations.  

Finally, it is important to note that the charge packet 
approach would not be desirable if discrete switching caused 
substantially accelerated battery degradation. While detailed 
analysis of battery impacts are beyond the scope of this paper, 
evidence from prior research suggest that charging Lithium 
Ion batteries at a constant rate resulted in no aging benefit, 
relative to a variable changing rate [36], and that pulsed 
charging can, under some circumstances, be beneficial to 
battery life [37].     
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