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Abstract
This paper describes a new approach, using “Ran-

dom Chemistry” sampling, to estimate the risk of large
cascading blackouts triggered by multiple contingen-
cies. On a 2383 bus test case the new approach finds
the expected value of large-blackout sizes (a measure
of risk) two orders of magnitude faster than Monte
Carlo sampling, without introducing measurable bias.
We also derive a method to compute the sensitivity of
blackout risk to individual component-failure probabili-
ties, allowing one to quickly identify low-cost strategies
for reducing risk. For example, we show how a 1.9%
increase in operational costs reduced the overall risk
of cascading failure in a 2383-bus test case by 61%.
An examination of how risk changes with load yielded
a surprising decrease in cascading failure risk at the
highest loadings, due to increased locality in genera-
tion and less long-distance transmission. Finally, this
paper proposes new visualizations of spatio-temporal
patterns in cascading failure risk that could provide
valuable guidance to system planners and operators.

1. Introduction

Cascading failure risk estimation is a notoriously
difficult problem, because of the many complicated pro-
cesses involved, the combinatorial number of possible
triggering events, and the fact that cascade sizes tend
to have a power-law tail [1], [2], [3], [4]. And yet,
because of the critical importance of electric power
systems, which are increasingly exposed to hazards
(storms, earthquakes, terrorists, etc.), cascading fail-
ure risk analysis is necessary. Recognizing this need,
the North American Reliability Council (NERC) has
adopted rules requiring electric utilities to study cas-
cading failure risk [5].

Existing approaches to the cascading failure risk
analysis problem in power systems can be categorized
as: high-level statistical methods (such as branching

processes) [6], [7], [8], [9], [10], [11], [12], abstracted
topological models [13], [14], [15], [16], optimization-
based approaches [17], [18], [19], [20], [21], and
detailed sampling/simulation methods (such as Im-
portance Sampling and the Splitting Method) [22],
[23], [24], [25], [26]. Each of these approaches has
advantages, but also important limitations. Statistical
approaches provide high-level insight, but can ab-
stract away potentially critical information, such as
the sensitivity of risk to particular component failure
probabilities. Purely topological models are relatively
easy to use, but can be misleading [27]. Existing
optimization approaches can provide guaranteed levels
of performance, but are largely limited to tractable
linearized models, which may obscure important non-
linear dynamics. Previous sampling methods are pow-
erful in that they can typically be applied to general
(linear or non-linear) models, but often provide only
a modest speedup over simple Monte-Carlo sampling
(see, e.g., [25]).

Recently, we proposed a new sampling method,
referred to as Random Chemistry (RC), that can find
minimal n−k contingencies that cause large blackouts
in O(log(n)) simulations [28]. In [29] we outlined
a method for using RC to estimate cascading failure
risk, based on the expected size of blackouts in various
size ranges. This paper describes the new approach,
and compares its speed to standard Monte Carlo risk
estimation. In addition, this paper describes and illus-
trates a method for estimating the sensitivity of the
overall risk of cascading failure to individual compo-
nent failure probabilities and shows how risk changes
as a function of load in a 2383-bus test case. Finally,
we explore new methods for mitigating and visualizing
cascading failure risk that could be beneficial to both
planners and operators.
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2. Methods

2.1. Random Chemistry (RC) Algorithm

The RC algorithm is a stochastic set-size reduction
search strategy that can be used to efficiently (in log-
arithmic time) find minimal subsets that are associated
with a certain outcome of interest. RC is a “wrapper”-
type global search method that can be used with any
forward simulator capable of detecting outcomes of
interest; the algorithm was first developed and applied
to genome wide association analysis in [30], and was
recently adapted to the problem of finding minimal
n− k blackout-initiating contingencies (henceforth re-
ferred to as “malignancies”) in power grids [28].

Briefly, in the context of power grids, the RC al-
gorithm operates as follows. In the first step, we use
a cascading failure simulator (to date, we have used
DCSIMSEP [28], [31]) to randomly search for a large
n−kinit contingency m that results in a large blackout.
For this paper, we define n to be the number of
branches in the system and we only consider branch
outages. The proposed method can easily be adapted to
include other types of contingencies, such as generator
outages. If kinit is sufficiently large (we used kinit = 80),
this step typically requires very few tries. The algorithm
then stochastically reduces m according to a loga-
rithmically decreasing set size reduction schedule (we
currently use {kinit = 80, k2 = 40, k3 = 20, k4 = 14,
k5 = 10, k6 = 7, kfinal = 5}) by testing random subsets
of the desired size until one is found that causes a
large blackout. If no such subset is found within a pre-
specified maximum number of tries T (we currently
use T = 20), the run is restarted from a new random
n − kinit contingency. Once the RC algorithm finds a
blackout causing n− kfinal contingency, the contigency
set of size kfinal is exhaustively searched until a minimal
n − k malignancy1 is identified of size 2 ≤ k ≤ kfinal
(in [28] we searched starting from k = 4 and worked
down to k = 2, but here we first search all k = 2
contingencies, in random order, and then work up to
k = 4, if needed). This cycle can then be repeated to
obtain large collections of minimal n−k malignancies.

2.2. Using RC to Estimate Risk

While the RC algorithm can quickly generate large
collections of minimal blackout-causing contingencies
(malignancies), it does not directly produce measures

1A minimal n−k malignancy is defined as a set of k components
that initiate a large cascading blackout when they fail (nearly)
simultaneously, but if any one of the k components did not fail a
blackout would not result.

of blackout risk that can allow one to compare differ-
ent cases, as one can do with standard Monte Carlo
reliability analysis procedures. This section describes
a method (based on [29]) to use RC to produce this
type of risk metric. Specifically, we focus on estimating
the expected value of large cascading-blackout sizes
triggered by exogenously-caused n − k branch (trans-
mission line or transformer) outage contingencies.

First, we start with a network model for a system
at an n− 1 secure state x and some simulator S(c, x)
that gives the size of the blackout that results from
an arbitrary n − k contingency c. Second, we set a
threshold TS , which encodes our definition for “large
blackout”, where any m such that S(m,x) ≥ TS is
considered a malignancy. This threshold is selected by
the user, based on the minimum size of the blackout
they wish to consider as “large”. In [28] we considered
a large blackout to occur when at least 10% of the
nodes became separated from the rest of the grid. In
this work we set TS = 5% of system load and then
examine the risk due to blackouts of various sizes
above this minimum threshold. Third, we run the RC
algorithm repeatedly, which will find some fraction of
the minimal n−{2...kmax} malignancies in the system,
for some kmax ≤ kfinal. Let ΩRC,k be the set of minimal
n− k malignancies found by RC, and Ωk is the set of
minimal n− k malignancies that exist in the particular
test case being studied, for each k ∈ {2...kmax}. Finally,
given the data that result, one can estimate the risk of
large cascading failures R̂RC(x) at a given system state
x with:

R̂RC(x) =
kmax∑

k=2

M̂k

|ΩRC,k|
∑

m∈ΩRC,k

Pr(m)S(m,x) (1)

where M̂k denotes an estimate of |Ωk|, the size of the
set Ωk, and Pr(m) is the occurrence probability for a
specific malignancy m. As more iterations of RC are
completed, (1) will capture the risk from an increas-
ingly large collection of n− {2...kmax} malignancies.

It is important to note that (1) assumes that the size
of a blackout triggered by any superset of a malignancy
m is the same as S(m,x). This assumption is needed
because RC finds minimal malignancies, but our risk
estimate needs to incorporate risk from both minimal
and non-minimal ones. For example, if the set of
components {23, 48} is a minimal malignancy, (1) also
needs to account for the risk from {23, 48, 72} (and all
other supersets of {23, 48}). Assuming that S(m,x)
is the same as S(m′, x), where m′ ⊃ m, allows
us to incorporate the risk from all of the supersets
m′ without having to explicitly run them through the
simulator, and does not appear to introduce measurable
bias into the outcome (based on comparisons with
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Monte Carlo sampling, as shown in Sec. 4-A). See [29]
for more details on the impact of this assumption on
risk assessment.

In addition, the results in this paper assume that
branch outages are statistically independent when com-
puting Pr(m). Extending the approach to account for
correlations in outage probabilities is possible, but
remains for future work.

A unique aspect of the cascading failure problem is
that the risk due to disturbances that impact one city
are very different from blackouts that spread across a
large region, such as Aug. 14, 2003 [32]. It is therefore
useful to separately estimate risk from blackouts in
various size ranges. Separating the risk estimate from
(1) into the portions contributed by blackouts in various
size ranges is relatively straightforward. For example,
the risk from blackouts with sizes between 20% and
30% of load can be found by summing over only those
malignancies m for which 20% ≤ S(m,x) < 30% of
load. Sec. 4-C illustrates this by showing trends in risk
for blackouts in different size ranges for our test case.

2.3. How many contingencies cause blackouts?

In order to use (1) to estimate risk, one needs an
estimate of the number of minimal malignancies that
cause large blackouts. Specifically, we need to find
M̂k ∼ |Ωk| for k ∈ {2...kmax}. In [28], we estimated
|Ωk| using a moving window approach to averaging the
empirically observed rate at which the RC algorithm is
finding new malignancies for each given k. However,
the resulting estimates are noisy and can take a long
time to converge. In more recent experimentation we
have found that fitting an exponential model to the
number of unique malignancies found by RC yields
more accurate estimates more quickly.

To illustrate why an exponential model is appropri-
ate, consider a jar of N balls numbered 1, 2...N . If
balls are removed from the jar one at a time (and
then replaced), it can be shown (see Appendix) that
the expected number of uniquely numbered balls drawn
after i draws (Ni) follows:

Ni = N(1− ei ln(1−
1
N )) (2)

If, in the RC case, every malignancy was uncovered
with equal probability during the course of the algo-
rithm, then least-squares fitting of (2) to data for i and
Ni could be used to find an estimate for N . However,
subsequent experimentation has indicated that, because
some components appear in malignancies orders-of-
magnitude more frequently than others (see [28]), the
probability of drawing each malignancy is not uniform.
As a result, the data for i and Ni in the RC case fall

slightly below the curve in (2), but are still exponential
in shape.

Based on these observations, we suggest an alterna-
tive exponential model, which was empirically found to
be more accurate for our application. Specifically, we
found that the number of unique malignancies found by
RC can be represented by the Cumulative Distribution
Function (CDF) of the exponential Weibull distribution.
We thus use a non-linear least squares method to fit
the parameters λ, µ, ν, and M̂k (the latter being the
estimate of |Ωk| and the variable of interest) in the
relationship:

|ΩRC,k(ik)| ∼ M̂k

(
1− e−(

ik
λ )µ

)ν
(3)

where ik is the total number of (not necessarily unique)
minimal n − k malignancies found so far by the RC
algorithm and, as in (1), |ΩRC,k(ik)| is the number of
unique minimal n− k malignancies found.

2.4. Using RC to Identify Critical Components

In [28], we observed that the RC algorithm could
be used to identify critical components based on the
number of potential malignancies in which they occur.
Here we improve on that by using the risk estimate in
(1) to find the sensitivities of overall risk to individual
component failures. If pi is the outage probability for
component i then one can use the partial derivative
of R̂RC,k(x) with respect to each pi as a measure
of the sensitivity of the overall risk caused by n − k
malignancies to this component, and then sum this over
all k ∈ {2..kmax}, as follows:

∂R̂RC,k

∂pi
=

M̂k

|ΩRC,k|
∑

m∈ΩRC,k

S(m,x)
∂

∂pi
Pr(m)

(4)

∂R̂RC(x)

∂pi
=

kmax∑

k=2

∂R̂RC,k(x)

∂pi
(5)

If we assume that outages are independent then, for any
particular malignancy m that includes branch i:

∂

∂pi
Pr(m) =

Pr(m)

pi
(6)

Section 4-C shows the resulting sensitivities from (5)
for the test case used in this paper.

3. Test case

The results in this paper come from experiments with
a model of the 2004 peak winter load in the Polish
power system (available with MATPOWER [33]). This
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test case has 2383 buses, n = 2896 branches (transmis-
sion lines and transformers), and 24.6 GW of total load.
Some of the transmission lines were overloaded in the
original system. In order to remove these overloads and
ensure that the system was initially n − 1 secure, we
increased the original line flow limits to be the larger
of the existing limit and 1.05 times the pre-contingency
line flows that occur when the system is at 1.10 times
the actual load; we refer to this case, before adjusting
the dispatch, as the “baseline case.”

To explore how cascading failure risk changes as a
function of load (presented in Sec. 4-C), we prepared
pre-contingency versions of the test system at a variety
of load levels, ranging from 50% to 115% of the
baseline case load. For each load level, a preventative
security constrained dc optimal power flow (SCOPF)
was used to dispatch generators, while maintaining
n − 1 security (see [34] for SCOPF implementation
details).

4. Experiments, Results and Discussion

This section describes results from several exper-
iments designed to illustrate the properties of our
approach.

4.1. Computational efficiency

The first experiment compares the computational
effort needed to compute blackout risk using the RC
method, with the computational cost of standard Monte
Carlo risk estimation.

To obtain data from RC, we applied RC to the
100% load (baseline) case; a total of 1 million RC
runs yielded 123,883 unique minimal n − {2, 3, 4, 5}
malignancies causing S ≥ 5% load loss. This included
all 540 n − 2 malignancies (subsequently verified by
exhaustive search), 38,212 n− 3 malignancies, 67,483
n − 4 malignancies and 17,648 n − 5 malignancies.
The estimate of M̂2 by (3) correctly identified the total
number of n−2 malignancies (Fig. 1a) and M̂3 appears
to be converging (Fig. 1b). Based on this estimate, we
believe the 38,212 n − 3 minimal malignancies found
represent approximately 57% of the full set Ω3.

Because it is not (currently) feasible to accurately
estimate M̂4 or M̂5, subsequent risk calculations used
only the data from the identified n−2 and n−3 minimal
malignancies. Note that the impact of this assumption
on the risk estimate is small for two reasons. First,
the probabilities (Pr(m)) of n − 4 and n − 5 malig-
nancies are extremely low (especially when outages
are assumed to be independent). More importantly,
because each term Pr(m)S(m,x) in (1) simultaneously
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Fig. 1. The number of unique minimal n − k
malignancies found by RC in the test system,
as a function of the total number of minimal
n− k malignancies found by RC at 100% load,
and the estimate of the set size (M̂k) by Eq. (3)
for (a) k = 2 and (b) k = 3.

captures risk from a minimal malignancy and all of
its supersets, the results from (1) already include the
contributions from ∼ 3 × 109 n − 4 and ∼ 7 × 1012

n− 5 malignancies. Only the minimal n− 4 and n− 5
malignancies are neglected; we conjecture that there are
few of these, relative the many non-minimal n−4’s and
n− 5’s.

The resulting cascading failure risk estimate from
(1), with kmax = 3, converges to the same value as
standard Monte Carlo (MC) estimates for the baseline
case, but RC is at least 2 orders of magnitude faster.
Note that while the RC risk estimate quickly converges
after about 100,000 calls to the simulator, the three
MC estimates have still not completely converged after
20 million calls to the simulator (Fig. 2). On a 2.66
GHz Intel Core i7 MacBook Pro with 8 GB memory,
it took an average of approximately 0.4 seconds per
call to DCSIMSEP for this test system; thus, if run
serially, it would require approximately 11 hours of
CPU time for the RC risk estimate to converge on this
system, whereas the MC risk estimate would still not
have completely converged after 92 days. However, the
proposed approach can easily be parallelized; we ran
independent simulations in parallel on a cluster of 100
cores. With sufficient computational resources, the cur-
rent approach can be used for day-ahead planning even
for large systems; we plan additional modifications that
may enable real-time updates of risk.
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function of branch sensitivities for the baseline
test case, from. (5).

4.2. Sensitivity of risk to individual components

In the baseline test case, we found that individual
branch sensitivities from (5) follow a largely bimodal
distribution (see Fig. 3; note that the x-axis is on a loga-
rithmic scale). There were 307 branches that exhibited
sensitivities above 100 kW, (red bars in Fig. 3) with
the remainder of the branches contributing relatively
little to risk. Closer examination revealed that all of the
sensitivities above 100 kW were caused by branches
that occurred in n− 2 malignancies, reflecting the fact
that the contribution of minimal n − 3 malignancies
to overall cascading failure risk is small, at least when
outages are assumed to be independent. A few branches
that occurred in only one or two minimal n − 2 ma-
lignancies, each resulting in relatively small cascades,
had sensitivities < 100 kW (yellow bars, Fig. 3), but the
majority of the components with sensitivity < 100 kW
occurred in n−3, but not in n−2 minimal malignancies
(blue bars, Fig. 3).

In Fig. 4 we plot the cumulative complementary
distribution function (CCDF) of the branch sensitivities;
the change in slope in the CCDF at 100 kW corre-
sponds to the change in modes in the distribution of
branch sensitivities above and below 100 kW illustrated
in Fig. 3. The CCDF of branches with sensitivity > 100
kW follows a roughly power-law distribution (Fig. 4).

It is interesting that there is only a weak correlation
between branch risk sensitivity and pre-contingency
flows, with no bimodality present in the distribution of
the latter (Fig. 5). Except for the most heavily loaded
branches, pre-contingency flow is not a strong predictor
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Fig. 5. Branch sensitivities for the baseline test
case shown as a function of (absolute) pre-
contingency power flow.
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Fig. 6. RC risk of various blackout (BO) sizes
as a function of load level for the test system
with pre-contingency dispatch by SCOPF.

of individual branch sensitivities. On the other hand, the
lines that contribute most to blackout risk are generally
those with very large power flows, which makes sense
given that all of the power flowing over a line will be
re-distributed throughout the system after the line trips.

4.3. Risk vs. load

Examining risk as a function of load using the
SCOPF-dispatched cases (see Sec. 3) yielded some
surprising results. The risk of very large blackouts
(S ≥ 40%), calculated from (1), increases quickly
above 85% load, but then decreases above 105% load
(Fig. 6). Inspection of the resulting data indicate that
the reduced risk at higher load levels results from the
way that SCOPF uses more local generation with less
long-distance transmission at higher load levels.

To illustrate this, Table I shows the total amount of
pre-contingency power flow on the largest transmission
branches in the system. At 105% load, these lines carry
17,102 MW, whereas at 115% load the total flow is
reduced to 15,916 MW.

TABLE I. Total (absolute) power flow on
branches with pre-contingency flow ≥ 200 MW.

Load level 95% 100% 105% 110% 115%
MW flow 16,312 17,032 17,102 16,869 15,916

4.4. Risk mitigation

Here we describe results that illustrate how the
proposed approach can be used to identify strategies
for reducing risk.
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Fig. 7. Cascading failure risk at 100% load
before and after decreasing the flow limits on
the three most “sensitive” branches.

Motivated by the observation that a large portion of
the risk comes from a small number of components,
and that the total flow on the largest transmission
lines seems to correlate with risk, we reran SCOPF
for the 100% load case after (temporarily) reducing
the line limits for the three most sensitive branches
by a factor of two (branches 96, 23, and 169, shown
with red asterisks in Fig. 4), and then re-estimated
RC risk on the re-dispatched system (but with the
original line limits restored). The resulting system had
a modest 1.6% increase in dispatch cost (a projected
increase of $33,300/hr) but resulted in a 61% reduction
in overall cascading failure risk and, importantly, an
83% reduction in the risk of very large blackouts
S ≥ 40% (Fig. 7). This result suggests that using the
risk estimation methods proposed here could be used
to design new optimal power flow formulations that
could better balance the trade-offs between operating
costs and large-blackout risk.

4.5. Comparing adjacent load levels

An examination of how the contingencies change
in the test system as the load is increased revealed
that there is (not surprisingly) a high probability that
a minimal n − 2 malignancy present at a given load
level is also present at a load level that is 1% lower or
higher (Fig. 8, solid circles and squares, respectively).
Specifically, for load levels between 55% and 115% in
the test system, the conditional probability that a given
n − 2 malignancy is present at a given load averages
0.89 and 0.82 if the same malignancy was present at 1%
lower or 1% higher load, respectively. In contrast, the

2753



!" #" $" %" &"" &&""

"'(

"')

"'!

"'$

&

*'+,-.

/,
0.

1>1,
0-

+'?
@,

2-
21+

1>A
'

,3
'B-

4
5'

4
-+1

60
-0

/A
'-
B'-
>'-

.7-
/5

0>
'+,

-.

'

'

809+,-.C9+,-.:&*2
809+,-.C9+,-.;&*2
809+,-.CD9+,-.:&*2
809+,-.CD9+,-.;&*2

Fig. 8. Conditional probabilities of a minimal
n − 2 malignancy being present in the test
system at a given load, given that it was (solid
markers) or was not (open markers) present in
the same system at 1% lower load (red circles)
or 1% higher load (black squares).

conditional probability that a malignancy is present at
a given load if it was not present at 1% lower or higher
load (Fig. 8, open circles and squares, respectively)
averages only 0.03 and generally rises as load increase
(p < 1e-9). The similarity in these lower two curves in
Fig. 8 shows that new minimal malignancies are just
as likely to appear in the test system if one reduces
the load by 1% than if one raises the load by 1%; this
is presumably due to changes in load distributions due
to changes in generator dispatch by SCOPF. In future
work, we will explore whether one can take advantage
of the relatively high consistency in malignancies at
similar system loads to permit rapid updating of risk in
response to real-time changes in load.

4.6. Visualization

Sampling approaches to cascading failure risk anal-
ysis, such as RC, produce large amounts of spatially-
explicit and state-specific data, including which n− k
contingencies can lead to cascading failure, which
branches or generators have the greatest sensitivities,
how spatial patterns of risk change with the state of
the system, etc. Presenting such Big Data in a way
that provides actionable insight to grid planners and
operators is a challenging topic in and of itself. For ex-
ample, while Fig. 8 indicates that there is generally high
persistence of malignancies between similar loadings,
it does not elucidate that there can be large changes
in the spatial patterns of malignancies at different load
levels. In contrast, the visualization in Fig. 9a-d makes

these patterns obvious; here, the gray network in the
foreground indicates branches in the Polish system,
while the black network in the background connects
the branch pairs in all of the n − 2 malignancies for
(a) 75% load, (b) 85% load, (c) 100% load, and (d)
115% load. This type of network visualization could be
interactively augmented in several useful ways, such as
coloring the branches based on load level, proportion
of load capacity, or branch risk sensitivity, or coloring
or sizing the n − 2 malignancy links based on size
of the resulting cascading failure, etc., in response to
planner or operator preferences. Such visualizations
might give planners and operators an immediate sense
of the overall level of risk of cascading failure as well
as identifying which regions of the grid are more at
risk and which components are the most sensitive. Note
how the spatial pattern of risk shifts for different levels
of load when generators are dispatched according to
SCOPF, with some branches becoming more sensitive
and others less sensitive as load is increased. If we
draw the same figure for the SCOPF case at 100% load,
after reducing the capacity of the three most sensitive
branches, the number of n−2 malignancies drops from
540 to 320, as shown in Fig.10.

A complementary type of visualization could be used
to alert grid operators as to potential malignancies in
response to real-time outages. For example, supposing
that branch 96 fails (Fig. 11, marked by a black
asterisk). For load levels {90%, 100%, 105%, 115%}
there are {6, 146, 191, 40} n − 2 malignancies that
involve branch 96, so the system is no longer n − 1
secure, and if any of these other branches (thick red
lines in Fig. 11a-d, respectively) fails it will trigger a
large cascading failure. (Note that the reduction from
191 to 40 n − 2 malignancies at 105% and 115%,
respectively, is due to more local generation at the
higher load level, which reduces the loading on long
distance lines, as described in Section 4-C.) Real-time
displays of this type of (n − 1) − 1 information in
response to component failures (e.g., in a storm) could
provide valuable information to operators as to how
to best respond to real-time contingencies to reduce
the risk of cascading failure. As described above, this
type of visualization could be augmented to contain
additional information through the coloring or sizing
of nodes and edges.

5. Conclusions and Future Work

This paper presents a new computationally efficient
method, based on the Random Chemistry (RC) algo-
rithm in [28], for estimating the risk of large (e.g.,
≥ 5% of system load) cascading blackouts. A compari-
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(a) (b)

(c) (d)

Fig. 9. The test system with branches in gray: n − 2 malignancies are shown in black for (a) Load level
75%, 39 n − 2 malignancies, (b) load level 85%, 345 n − 2 malignancies, (c) load level 100%, 540 n − 2
malignancies, (d) load level 115%, 378 n− 2 malignancies.

Fig. 10. The test system with branches in gray:
n − 2 malignancies are shown in black for the
320 n−2 malignancies that occur at 100% load
when dispatch is generated using SCOPF with
branch capacities halved for branches 96, 23,
and 169 (compare to base capacities at 100%
load in Fig. 9c.

son of this method to Monte Carlo (MC) simulation on
a model of the Polish transmission system shows that
the new approach is at least two orders of magnitude
faster than MC, and does not introduce measurable bias
into the estimate.

The computational efficiency of the RC approach
comes from the way that it is able to find large
blackout-causing contingencies in O(log(n)) simula-
tions, as opposed to MC, which samples broadly from
all possible contingencies, of which only a tiny fraction
cause cascading failures. Since the size of blackouts
follows a roughly scale-free distribution [35], the prob-
ability of finding a large blackout by random sampling
decreases dramatically with the size of the blackout.
Thus, RC becomes increasingly efficient relative to
MC when searching for larger blackouts. In future
work we plan to relax the assumption of independence
of component outages and to incorporate additional
efficiencies into RC risk estimation that will make this
method fast enough for both day-ahead planning and
real-time updating of cascading failure risk estimates.

Here, we assume that branch failures in initiating
malignancies occur simultaneously. In future work, we
will explore the impact of order of initiating contingen-
cies on risk. It should also be noted that the RC risk
estimation algorithm is independent of the cascading
simulator employed. To date, we have used DCSIMSEP
[28], [31], which does not consider dynamic instabil-
ities, voltage collapse, or transient instabilities (all of
which may contribute to blackouts) nor does it con-
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(d)(d)

(a) (b)

(c)

Fig. 11. The test system with branches in gray, a single branch outage marked by a black asterisk, and
individual branch outages that would cause a cascading failure shown in thick red lines for: (a) 90% load,
(b) 100% load, (c) 105% load, and (d) 115% load.

trol cascades (e.g., by regulation reserve or automated
voltage regulation). However, the risk analysis process
proposed here can be used in combination with any
cascading failure simulator that reports the blackout
size, given an initiating contingency. In future work
we will incorporate a more detailed cascading failure
simulator and test the impact of those phenomena on
the efficiency of the proposed approach.

When examining how the risk of cascading failure
changes with system load level, we found that risk can
sometimes decrease as load increases. This was found
to be due to increased use of local generation at the
highest load levels, which resulted in reduced power
flows on large long-distance transmission lines; this
illustrates the importance of understanding how spatial
patterns in generator dispatch affect cascading failure
risk. In future work, we will also explore how spatially
heterogeneous changes in load may impact the risk of
cascading failure.

Using RC also enables us to disaggregate risk with
respect to the resulting blackout sizes and the sensitivity
of blackout risk to individual branch outage probabil-
ities. We derived a method to use the data generated
by the RC approach to quickly estimate the sensitivity
of risk to particular components. We illustrated the

potential value of this knowledge by showing how
one could mitigate risk by dispatching generators to
limit the flows on some of the most sensitive branches.
Specifically, for a model of the Polish system at peak
2004 winter load, we dispatched generators based on
the assumption that the capacities of the three branches
with the highest risk sensitivity were half of their true
values. The result was a 61% reduction in the overall
risk of large blackouts (≥ 5% of system load) and an
83% reduction in the risk of very large blackouts (≥
40% of system load), but only a modest 1.9% increase
in operational costs. As the risks and costs of large
cascading failures increase, planners could similarly
employ the RC method to weigh the tradeoffs between
economic operational efficiency and blackout risk, and
adjust optimal power flow formulations accordingly.

Finally, we introduced new visualizations of the
spatio-temporal patterns in cascading failure risk as
the state of the system changes. We believe that such
visualizations could provide valuable guidance to sys-
tem planners and operators in seeking to minimize and
mitigate the risk of cascading failures.
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Appendix: Derivation of Equation (2)

This appendix presents the derivation of (2), the
expected number of uniquely numbered objects found
(Ni) after i draws from a jar of N objects numbered
1...N .

After the first draw, one will have found precisely
1 unique object. In subsequent draws, the expected
number of unique items found is:

Ni = Ni−1 +
N −Ni−1

N
= rNi−1 + 1 (7)

where r = 1− 1
N . Equation (7) is a recursive function,

for which we would like to find a closed-form expres-
sion. To do so, one can divide both sides by ri, which
gives:

Ni

ri
=

Ni−1

ri−1
+

1

ri
(8)

Let
Ni =

Ni

ri
(9)

Then:
Ni = Ni−1 +

1

ri
(10)

N0 = 0, so:

Ni =
i∑

j=1

1

rj
=

N
(
1− ri

)

ri

Based on (9): Ni = N
(
1− ri

)
= N(1 − ei ln(r)), as

presented in (2).
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