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Abstract—Sales of privately-owned, plug-in electric vehicles
(PEVs) are projected to increase dramatically in coming years
and their charging will impact residential service transformer
loads. Transformer life expectancy is related to the cumulative
effects of internal winding temperatures, which are a function of
loading. Thermal models exist (e.g., IEEE C57.91) for predicting
these internal temperatures, the most sophisticated being the
Annex G model. While this model has been validated with
measurements from large power transformers, small residen-
tial service transformers have been given less attention. Given
increasing PEV loads, a better understanding of service trans-
former aging could be useful in replacement planning processes.
Empirical data from this work indicate that the Annex G model
over-estimates internal temperatures in small, 25 kVA, 65 �C
rise, mineral-oil-immersed transformers. This paper presents
an alternative model to Annex G by using a genetic program
(GP). This model is both simpler and more accurate at tracking
empirical transformer data. These results suggest that one can
use a simple thermal model in combination with data from
advanced metering infrastructure (AMI) to more accurately
estimate service transformer lifetimes, and thus better plan for
transformer replacement.

Index Terms—Smart grids, power transformers, genetic pro-
gramming, asset management, electric vehicles.

I. INTRODUCTION

THIS paper focuses on methods used to estimate the
lifetime of service transformers in residential areas. The

term service transformer is used here to define the pole- or
pad-mounted transformers that directly serve residential loads.
The service transformers considered in this paper are 25 kVA,
65 �C rise mineral-oil-immersed devices. Though these par-
ticular assets are fairly inexpensive–around $700 for pole-
mounted and $1,500 for pad-mounted plus installation costs–
the entirety of the fleet will typically constitute a significant
fraction of a distribution utility’s physical assets.

Sales of plug-in electric vehicles (PEVs) are expected to
greatly increase. Inflating adoption rates are predicted to stress
the grid and require distribution transformer replacement [1],
[2], [3]. For instance, Level 2 charging of PEVs draws 7.2 kVA
of power from the grid. For a 25 kVA service transformer,
this amounts to 29% of the rated load. The average American
household has two vehicles [4]. Given that a single service
transformer may serve ten houses, PEV penetration rates of
25% could load a 25 kVA device to 144% of rated load, if
the vehicles charge simultaneously. Because charge times for
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PEVs are expected to overlap, even low penetrations of PEVs
can create harmful overloading for service transformers [5].

Power transformers, such as those serving multiple neigh-
borhoods and rated upwards of 500 kVA, are typically mon-
itored closely as their failure in the grid can be costly to
utilities and can cause prolonged outages [6]. However, the
cost of monitoring each service transformer on the network
is generally too expensive, computationally or monetarily,
and approximations are used to determine device lifetimes.
However, a utility that has advanced metering infrastructure
(AMI) has access to accurate loading history for its service
transformers and can estimate wear based upon these data. The
expense of tracking these assets are then mostly computational.

Where loading is known for a transformer, artificial neural
networks (ANN) have been proposed to match the loading pro-
file of a new transformer to the loading profiles of transformers
in a recorded database to yield an estimate of remaining
lifetime of the new device [7]. Because this paper looks at the
damage caused by new PEV charging loads, representative
databases are likely not available. Also, ANNs do not give
the utility an intuitive understanding of how they predict their
outcomes. Another approach is to probabilistically estimate
the number of transformers that will require replacement as
a function of predicted PEV adoption rates as discussed in
[2]. While this analysis is helpful to utilities, it only helps for
budgeting, leaving the real-time health of specific transformers
in question. Finally, a thermal model can be used which can
yield the desired estimates on transformer life while preserving
the connection between how the model works and our intuition
about how aging occurs in transformers. Such models can be
found in [8].

In general, loading transformers causes heating in the inter-
nal windings and degrades the insulating material. The effect
of overloading is to cause accelerated aging compared to a unit
that is loaded to its rated power. If enough overloading accu-
mulates in a single transformer, its lifetime can be significantly
curtailed. Transformer aging theory and modeling methods are
discussed in the IEEE Guide to Loading Mineral-Oil Immersed
Transformers [8]. Due to the internal heating’s exponential
dependence on transformer loading, energy-equivalent load
profiles without peaks are more economic than those with
peaks as seen in (1).

This equation set says that if internal heating is an ex-
ponential function of load, L(t)x with x > 1, then the
least heat would be created by a flat loading profile, K.
Because simultaneously charging PEVs from a single service
transformer causes large loading peaks, (1) is of importance.
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Moreover, since aging depends on heating, (1) informs us
that an accurate estimation of transformer aging starts with a
detailed history of transformer loading. If the loading history
is known, two models are given by the IEEE loading guide,
Clause 7 and Annex G, for calculating transformer aging [8].
The latter model is more complicated, but it is more accurate.
Other methods exist which use a circuit model to depict device
heating [9], or attempt a complete 3-D dynamic model [10].

In summary, the use of a thermal model would allow
utilities to more closely track their service transformer fleets.
Ideally, the model would be concise, intuitive, and accurate
so that utilities could track many service transformers with
minimal effort. To this end, we propose that there exists a
simple thermal model that would track the existing data at
least as well as the more complicated Annex G and will
better represent heating in service transformers. This model
will allow for a computationally inexpensive and accurate
description of aging in the service transformer fleet.

This paper is organized as follows, Section II describes the
data collection process and devices used. Section III explains
present drawbacks to using the IEEE Annex G model and
discusses some motivation for using a genetic program (GP)
to find a thermal model for service transformers. Section
IV details the modeling process via an example with data
created with the Annex G model. Section V explains why this
modeling process would be of use to utilities. Finally, Section
VI summarizes the findings of this work.

II. DATA COLLECTION

This paper uses experimental data to validate thermal mod-
els for service transformer heating. The following section
presents information on how these data were acquired.

Howard Industries smart transformers were used to gather
thermal and loading data. When powered, the smart trans-
formers output information about the state of operation of
the machine each minute. The key output parameters from
the instrumented transformer and accompanying sensors are
ambient temperature, internal temperatures, and load. Trans-
formers were installed in two locations in South Burlington,
Vermont. The locations of these transformers were chosen to
be in areas where loading was expected to peak above the
transformer’s load rating. Each transformer serves a minimum
of eleven homes.

Internal temperature data include the outer low voltage
winding (OLVW) temperature which is used in this paper.
This reading can be compared with the TW or TO values
from the Annex G model, the winding or top oil temperature,
respectively. The locations of the temperature probes are
shown pictorially in Figure 1.

The data loggers used in this research were Campbell
Scientific CR800’s which recorded serial output from the smart

Fig. 1. Transformer winding cross-section. The transformers in this work are
1�. Red circles represent where temperature sensors are located in the Howard
Industries devices. Windings show are inner low voltage winding (ILVW),
high voltage winding (HVW), and outer low voltage winding (OLVW). The
upper-left dot represents the Top Oil (TO) temperature.

transformers as well as output from an ambient temperature
sensor. All measurements are real time values which are
collected every minute.

Collected data have shown that during periods of high
ambient temperature, loading on the instrumented transformers
peaked above the rated loading limit. However, the average
loading on the transformers was only 9.4 kVA over the course
of three months of logging.

III. MOTIVATION FOR A NEW MODEL

As mentioned in Section I, the IEEE has published models
to predict the internal temperature of a transformer. The fol-
lowing Section discusses whether the Annex G model may be
overly complicated for modeling 25 kVA service transformers.
It also presents evidence that the predictions of the model may
be overly conservative, and thus not an accurate representation
of the internal heating of these units.

A. The Annex G Model
For this work, we used the IEEE Annex G model to aid in

comparison with previous work [5]. Experimental comparisons
for the Annex G model can be found for larger transformers
[11]. To our knowledge, there is no existing literature that
validates the Annex G model for smaller service transformers.

Using data from a representative day, Figure 2 shows a
comparison of top oil temperature data which was output
from the Annex G model alongside a measurement of the
top oil temperature data from a smart transformer (refer to
Figure 1). Figure 2 also shows a comparison of the Annex
G model’s prediction for the internal hottest spot temperature
and the thermal limit for the hottest spot temperature (110 �C),
which when loaded to produces aging at 1 pu [8]. These
data show that during peak loading, the Annex G top oil
temperature is overestimating the actual top oil temperature by
over 20 �C. Also, even if the Annex G hottest spot estimates
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Fig. 2. Comparison of Annex G calculated top oil temperature and measured
top oil temperature. From top to bottom, the plot shows the thermal hottest
spot temperature limit for normal aging of a transformer (110 �C), the Annex
G prediction for hottest spot temperature, the Annex G prediction for top oil
temperature, and the measured top oil temperature. All measurements and
predictions depend data collected as described in Section II.

are correct in Figure 2, this transformer can be loaded much
more before accelerated aging will occur. This is because per
unit aging is defined as aging in a transformer with a hottest
spot temperature of 110 �C, the dashed line at the top of Figure
2.

B. Introduction to Using a Genetic Program
A genetic program (GP) is an evolutionary algorithm (EA)

which is used to evolve a population of individuals based on
some fitness test [12]. The GP does not aim to find the best
solution given an equation structure, rather the best structure
given an infinite set of possible structures. Here, a GP is
used to create a list of mathematical structures that attempt
to model the dynamics of a service transformer’s hottest spot
temperature. The merits of genetic programming are well
documented [12], [13], [14]. A note is in order of preferring
an approach that allows for highly complex and disorderly
solution structures; a succinct, physically-appropriate solution
is ultimately selected by human intervention. The GP will
work to continuously output better solutions and it is the job
of the user to pick a reasonably intuitive and concise solution.
A GP called Eureqa Formulize, developed by Nutonian, is
used in this work to find underlying structures in the data.
The program is based on the work done in [14].

The solution we will search for in this paper is a single dif-
ferential equation that reliably models changes in the internal
temperature of a service transformer. To see the utility in this,
the reader can refer to the Annex G model which is made up
of over 30 equations, many of which are differential equations.
In contrast, the solution we seek in this paper is of the form
shown in (2).

˙
THS(s) = f(THS(s), L(s), TA(s)) (2)

To begin the genetic program, a set of solutions of the form
shown in (2) are said to make up the population of solutions
in the first generation of the program. Each solution is termed
an individual. Note that we use s in (2) to emphasize that the
data are discrete.

To assess the fitness of each individual in each generation
of the GP, the fitness test, F(Xg,i), shown in (3) will be used.

Fig. 3. The model selection process. Each block is an individual solution with
the shade representing its absolute fitness, white meaning zero error. The GP
is initialized, a set of fit individuals surfaces and the process is terminated,
a subset of fit individuals are further refined using a LMS approach, and a
single model is ultimately chosen.

The individual, Xg,i, is number i in the g

th generation of the
GP. The variables we will use are L(s), TA(s), and THS(s)
for load, ambient temperature, and hottest spot temperature as
a function of the discrete variable s, where S is the number
of data points we are using in the GP. Every generation, the
N individuals are tested and ranked in descending order of
fitness.

F(Xg,i) =

1

S

S�1X

s=0

⇣
˙

THS(s)�Xg,i (L(s), TA(s), THS(s))
⌘2

(3)

Fit individuals are propagated through future generations
as a function of their relative fitness and new individuals are
created by combining aspects of fit individuals. In our work, a
set of individual solutions are chosen from the final generation.
The coefficients on these solutions are then refined via a least
mean-squares (LMS) approach, and one solution is ultimately
chosen as a best model for the data.

The process is shown graphically in Figure 3. Each block
represents an individual in this process (i.e., a solution mod-
eling the change in hottest spot temperature). The shade
associated with each individual represents its mean squared
error (MSE).

IV. GP MODELING

With regard to the complexity of the Annex G model, the
following Section seeks to find a simpler thermal model that
tracks internal temperatures as well as the IEEE Annex G
model and we detail a broad approach by which a thermal
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model can be created to accurately describe the internal
heating of service transformers based on user-defined input
variables.

To model the dynamics of the Annex G model, we start with
a hottest spot temperature profile created by this model. To do
this, we input ambient temperature data and actual loading
data, which was increased to 150% of the measured values
to bring the internal temperatures closer to the transformer’s
limits and to expose the dynamics of the model. The Annex G
hottest spot temperature (THS), the ambient temperature (TA),
and the loading (L) are used as inputs to the GP. It should
be noted that variables TO and TW , which are other outputs
from the Annex G model, could have been used as additional
inputs to the GP. In this way, we would have to actually model
multiple differential equations, one for each variable, and come
up with a set of equations that would need to be integrated
forward together to find the hottest spot temperature, THS .
Again, it is our purpose here to simplify, so we choose to
relate the input variables to one of the original outputs of the
Annex G model, the hottest spot temperature.

Heuristically, we would expect that the change in THS (i.e.,
˙

THS) will depend on the difference between the hottest spot
temperature, THS , and the ambient temperature, TA. Hence,
to simplify the search space, we define TD as shown in (4),
and we seek a differential equation for the change in hottest
spot temperature as shown in (5), which is another way of
describing (2).

TD = THS � TA (4)

˙
THS = f(L, TD) (5)

The allowable operations for these input variables were:
addition, subtraction, multiplication, and negation. This search
space has closure, meaning that solutions may be composed
of results from other solutions, and it is also reasonable to
assume that it is sufficient, meaning that the input variables
and operations are enough to describe the dynamics. The
justification of sufficiency comes with the acceptance of a
model at the end of this Section.

A. Running the Genetic Program and Selecting Solutions
To acquire our candidate thermal models, we ran the GP for

over 6 hours with 16 cloud cores. To reiterate, the GP started
with a randomly selected subset of mathematical structures
from the infinite solution space created by the assumed vari-
ables and mathematical operators of interest. These solutions
were then mutated and recombined by the GP until the GP
was manually terminated as discussed in Section III-B. After
this, what remains is a population of solutions representing the
most fit individuals; the ten simplest out of the final population
are considered here. They are shown, ordered by complexity
and labeled alphabetically (a-i), in Table I. This table labels
each solution equation structure with a letter which will be
referenced throughout this paper. Detailed explanation and
defense of this process is beyond the scope of this work, but
is contained in [12].

TABLE I
STRUCTURES ARISING FROM GP AND FOUR SELECTED STRUCTURES

TRAINED ON THE DATA IN FIGURE 4.

ID Structure for ˙THS Model for ˙THS (Trained in Figure 5)
a ↵1
b ↵1L
c ↵1L+ ↵2
d ↵1L+ ↵2TD 0.0367L� 0.0188TD

e ↵1L+ ↵2 + ↵3TD 0.0469L� 0.262� 0.0149TD

f ↵1 + ↵2L2 + ↵3TD 0.178 + 0.00094L2 � 0.0149TD

g ↵1L2 + ↵2 + ↵3T 2
D 0.00096L2 � 0.040� 0.00022T 2

D
h ↵1L+ ↵2L3 + ↵3TD

i ↵1L+ ↵2L4 + ↵3TD

As is common with genetic programs, it is up to the user
to select a reasonable solution [12], [13], [15]. Solution (a)
from Table I is not a good selection because it is constant that
doesn’t depend on any of the input variables. Models (b) and
(c) do not depend on TD, which is connected to TA, a known
input to the Annex G model. Therefore, we do not choose
these either. Models (h) and (i) begin to create complicated
polynomial fits from the variable L and are also not chosen.

We continue with solutions (d), (e), (f), and (g), shown
in bold. It will be shown that one of these models can be
considered acceptable when compared to the Annex G model
in the following subsections. If this were not the case, the
next logical step would be to include more of the models
from Table I to see if any of these yield better results. If no
models can ultimately be selected by the end of this process,
the assumption is that the solution space is not sufficient and
more input variables, beyond our chosen L and TD, need to be
added and the GP must be rerun. For reference, the resulting
models from the training discussed in the following subsection
are shown in Table I.

B. Fitting Selected Structures to Training Data via Least Mean
Squares

The next step is to take the structures obtained from running
the GP and find a best LMS fit to make the actual models.
In making a model, we must train it on certain data and then
check its validity on new data. These models are trained on
the inputs shown in Figure 4, where the loading profile is an
hour long pulse and the temperature profile is a ramp. During
research, training the models with fictitious data like the load
pulse and temperature ramp was more successful in finding
a best fit. The short load pulse and temperature ramp allows
us to separate out dynamics due to loading and temperature
differentials.

As specified in [8], emergency overloads are intentional
overloads that last for only a short duration. Loading guides
in this document cite a maximum emergency overload limit of
2 pu, thus though the load pulse shown is fictitious, it is not
an unreasonable estimate to a loading scenario. Loading goes
from very underloaded, at 0.5 pu or 12.5 kVA, to overloaded,
at 1.5 pu or 37.5 kVA. The temperature ramp changes from
0 �C to 40 �C during an interval in the middle of the day. Such
low temperatures help the model train when TD is large, and
high temperatures allow the model to train when TD is small.
In Fahrenheit, the temperatures go from 32 �F to 104 �F. This
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Fig. 4. A THS curve is produced to train structures (d)-(g). The loading
profile (top) and ambient temperature profile (middle) are used to create
a the Annex G predicted THS temperature (bottom-black). Coefficients of
structures (d)-(g) are set to minimize differential equation error and then
integrated forward and are shown compared to the Annex G prediction
(bottom-colors).

ambient temperature spectrum certainly covers the hottest days
in a Vermont year, though locals can attest that it does not fully
handle the lowest. Again, this training data is meant to have
some practical ranges, but need not be experimental for the
purposes of training the models.

The Annex G model is then used to predict the hottest
spot temperatures throughout the day, shown in Figure 4
(bottom). The models (d)-(g) are then fit to the change in
the Annex G curve and also shown in Figure 4 (bottom),
where they have been integrated forward for comparison of
modeled THS temperatures. Notably, model (d) is the only
curve which seems to have a steady state error. Another
clarifying point, the models do the worst at the beginning of
the day when the ambient temperature is low, though all of the
models begin with initial conditions from the prior night when
ambient temperatures were discontinuously higher as seen in
Figure 4 (middle). Abrupt changes like this are included to
help train the models by emphasizing the dynamics of the
Annex G model, though ambient temperatures do not have
such discontinuities in practice. Loading, on the other hand,
as expressed in Figure 4 (top) can change very rapidly. The
LMS fits for the structures obtained from the training portion
of this process for the models (d), (e), (f), and (g) are shown
in the rightmost column of Table I.

TABLE II
ERROR TABLE: MEAN SQUARED-ERROR (MSE) IN �C/min

2 AND ERROR
PER POINT (EPP) IN �C FROM THE TRAINING (T), THE LOW LOAD (L),

AND THE HIGH LOAD (H). MODELS REFER TO THOSE IN TABLE I.

ID MSE T MSE L MSE H EPP T EPP L EPP H
d 0.0251 0.0272 0.2311 1.2805 0.4796 -6.0791
e 0.0216 0.0214 0.2011 0.0286 1.8721 3.6869
f 0.0216 0.0272 0.1692 0.0286 -1.0069 -1.0193
g 0.0203 0.0265 0.1580 0.2560 0.3465 -3.4269

Fig. 5. Model validation via a comparison with independent THS predictions
for low loading. The loading profile (top) and ambient temperature profile
(middle) are used to create Annex G and model (d)-(f) THS predictions
(bottom) to validate the models for low loading scenarios.

C. Selecting a Final Model Based on Validation

The four models acquired from the training process are then
assessed with new a new load profile, Figure 5 (top), and a new
temperature profile, Figure 5 (middle). The loading curve here
is measured loading data from one of the smart transformers.
This loading is typical of that seen in the experimental
neighborhoods where the load breaches the transformer’s rated
limit only between the hours of 8PM and 10PM. The ambient
temperature curve shows that this data was collected on a hot
day, at least for Vermont.

Figure 5 (bottom) shows the comparison of the resulting
forward integrations of models (d), (e), (f), (g). To create these
curves, the Annex G method was used to find an estimate for
the transformer’s hottest spot to which the models are com-
pared. Model (d) is seen to overestimate the Annex G hottest
spot temperature between 8AM and 10AM and underestimate
between the hours of 8PM and 10PM. Model (e) is seen to
overestimate the Annex G hottest spot temperature between
2PM and 12AM the next day and the model does not seem
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to converge at the end of the day. Model (f) is arguably the
best fit, though model (g) is also very good. Though beyond
the scope of this paper, validation runs for these models with
different loading levels show that model (f) outperforms all
of the other models and thus it was selected from the original
structures shown in Table I. A summary of the different model
fits is shown in Table II. This table shows the mean squared
error (MSE) for each of the models in training (T), low-load
validation (L) which is shown in Figure 5, and high-load
validation (H) which is not shown. The MSE has units of
�C
/min

2 because it is relating to the change in the hottest spot
temperature. Also tabulated are the error per point (EPP) which
is a measure of how symmetric the error is. This number is
found by summing the errors and dividing by the number of
data points and has units of �C. Together the MSE and EPP
yield a more complete description of the model’s ability to
track the Annex G predictions. From Table II, model (f) has
the most consistently low EPP and has low MSE.

D. Results from Modeling Approach
This process has shown that many models came organically

out of a GP. From these models, four were selected for further
study that seemed to be both well related to the physics of the
actual problem and reasonably simple. The actual coefficients
for these models were thrown away so that the structures were
kept. They were then re-fitted with with new coefficients using
fictional training data and the least mean squares method. To
understand whether these fits worked for the specific data or
generally for other data sets, the models were validated by
integrating them forward with new data. These results show
that, qualitatively, all of the models tracked both the changes
in temperature of the hottest spot, as predicted by the Annex
G method, as well as the overall accumulated hottest spot
temperature. We showed that the best model for the Annex G
method was (f) as re-stated in (6). The achievement here is
finding a differential equation that use only two measurable
inputs, three terms, and still tracks the Annex G output
reasonably well for very different loading data sets.

˙
THS ⇡ f(L, TD) = 0.178 + 0.000939L2 � 0.0149TD (6)

Recall that the Annex G model is made up of a large set
of differential equations. Thus, the model presented in (6)
manages to follow the dynamics of the Annex G model’s
predictions of the hottest spot temperature, Figure 5 (bottom),
while being much simpler. Model (f) is not meant to be a
replacement for the Annex G model for all transformers. How-
ever, we have conjectured that a 25 kVA service transformer
may not require the full complexity of the Annex G model
and have shown that the structure of model (f), using only one
differential equation, has been validated to predict hottest spot
temperatures in accordance with the IEEE standard model. It
should be noted that this model has been trained and validated
against the Annex G model for a single set of transformer
parameters. This means that the model coefficients may need
to be tuned for use with slightly different transformers.

It is important to note that the model in (6) makes physical
sense, given thermodynamics and circuit theory. If we recall

the equivalent circuit for a transformer, there are power
losses associated with the modeled resistance of the core and
the resistance of the winding. These power losses manifest
themselves as heating and are proportional to the square of
the current through the resistors. Because the voltage at a
transformer is relatively constant, the load (L) served by a
transformer is proportional to the current through the windings.
The power loss in the winding resistance is then proportional
to the square of this instantaneous current. Hence, the L

2 term
in (6) supports this rationalization. Furthermore, Newton’s
Law of Cooling tells us that a body cools in proportion
to the difference between its temperature and the ambient
temperature, i.e., the term TD from (6) [16]. Finally, the
constant in this equation may be an adjusting factor since we
are directly relating an internal temperature to the ambient
temperature. Such physical insight would not be obtained
using alternative empirically-based modeling methods such as
artificial neural networks.

V. CONNECTION TO ASSET MANAGEMENT

Thus far, we have explained how the Annex G model
may not be appropriate for describing the heating measured
experimentally in our instrumented service transformers. We
have also proposed an approach by which a simple thermal
model can be found for service transformers. This Section
seeks to explain how a utility would be able to leverage such
a model for better asset management of its service transformer
fleet.

The large fleet of service transformers owned by utilities
is an important subset of assets that must be appropriately
managed. Given that the utility in question has already in-
stalled AMI, access to loading data for these transformers
is relatively inexpensive. This includes getting local ambient
temperatures from nearby national weather stations (e.g., the
KBTV station for South Burlington). Initial results show that
the Annex G thermal model for loading these transformers is
overly conservative in that it predicts internal temperatures to
be higher than what are experimentally recorded. In addition,
the cumbersome nature of the model along with the large
number of device-specific constants required, presents a barrier
to utilities. The approach to modeling hot-spot temperatures
can be used by utilities to find a concise, intuitive model which
can leverage loading data.

In this way, utilities see the effect of increased loading from
PEV charging as it appears. This requires neither a history of
transformer failure as a comparison nor a cumbersome model
which is unintuitive and computationally intense. The method
only depends on evidence that insulation pyrolysis, the de-
struction of the material via heating, is the determining factor
in transformer aging. With up-to-date information on service
transformer aging, utilities can preemptively install additional
capacity before certain devices breakdown and appropriately
budget for future device purchase and installation.

In addition, the approach explained in this paper is flexible
to the input data used. The Annex G model uses only loading
and ambient temperature as inputs, though other factors (e.g.,
wind speed, solar intensity, etc.) may be important in properly
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modeling transformer heating. By measuring this data and
using it as an input to the approach shown in Section IV, such
dependencies can be included. For example, work with ANNs
has shown that current harmonics in devices may have an
effect on heating which is not captured by the Annex G model
[17]. Another factor that may be of import is hydrolysis, which
has been shown to effect insulation aging for transformers
loaded far below their rated limits [18]. Finally, utilities would
also have the option to include load management, and control
loading based on calculated internal temperatures. Monitoring
their transformer fleet in this way would allow for more
accurate and flexible management.

VI. CONCLUSION

Initial data collected for this paper indicate that the Annex
G model is overly conservative in that it overestimates internal
temperatures for the instrumented 25 kVA service transformers
used in this work (see Figure 2). Because a precise estimate
of a transformer’s hottest spot temperature is the standard
indicator for insulation aging, an approach to finding a more
appropriate model was detailed. The approach used a genetic
program to remodel output from the Annex G model to
indicate the effectiveness of the method. The result of this
approach was shown in (6), which was far simpler than the
Annex G model, and tracked the model well. Our existing
measurement system did not provide data for hottest spot
temperature; collection and modeling of hottest spot data
remains for future work.

Given that utilities have increasing access to residential load
time-series data and that weather data are readily available,
real-time monitoring of service transformers is a realistic goal.
If these assets are monitored, utilities can gain information on
how much additional loading capacity exists at the residential
level to serve predicted PEV charging requirements. They can
also closely monitor the aging rates of these devices and make
decisions on how to schedule future replacements and upgrade
these devices proactively instead of reactively. Therefore, by
leveraging data collected by AMI, utilities can more closely
monitor aging in assets that were previously difficult to track.
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