
Aggregate Modeling and Coordination of Diverse Energy Resources Under
Packetized Energy Management∗ †

Luis A. Duffaut Espinosa, Mads Almassalkhi, Paul Hines, and Jeff Frolik

Abstract— Transmitting a large file across the internet re-
quires breaking up the file into smaller packets of data. Pack-
etized energy management (PEM) leverages similar concepts
from communication theory to coordinate distributed energy
resources by breaking up deferrable residential consumer
demands into smaller fixed-duration/fixed-power packets of
energy. Each individual load is managed by a probabilistic
automaton that stochastically requests energy packets as a
function of its local dynamic state (e.g., temperature or state-of-
charge). Based on the aggregate request rate from packetized
loads and grid conditions, the PEM coordinator will modulate
the rate of accepting requests, which permits tight tracking of a
reference (load-shaping or market) signal. This paper presents a
state bin transition (macro) model suitable for characterizing a
diverse population of electric water heaters (EWHs) and energy
storage systems (ESSs) under a single PEM coordinator that
is validated against a physical micro simulation of the diverse
loads. The resulting model provides a measure of real-time
flexibility of the aggregate population that is a function of the
request rate and illustrate how diversity of packetized load types
enhances the level of flexibility offered by the coordinator.

Index Terms— Packetized energy management, state bin
transition model, controlled Markov chain, distributed energy
resources, modeling.

I. INTRODUCTION

Operating the electric grid reliably with a high penetration
of renewable energy represents a significant challenge. To
overcome this challenge, an active role for flexible and
controllable distributed energy resources (DERs), such as
thermostatically-controlled loads (TCLs) and energy storage
systems (ESSs) has been proposed [1]. While the core con-
cepts underlying modern demand-side management (DSM)
have existed for decades [2], [3], the technology for co-
ordinating the activities of DERs is nascent but maturing
rapidly [4]–[6]. This is the context in which PEM aims to
contribute as presented in [7], [8].

Under packetized energy management (PEM), a load
aggregator requires only the aggregate power consumption
and the aggregate request process from a collection of
loads to develop control strategies. While aggregate power
consumption only informs the system about devices that are
ON, PEM’s unique packet request process received from the
loads that are OFF supplies valuable information about the
OFF-population. From this perspective, PEM’s limited data
requirement represents a significant advantage over other
aggregate model-estimator-controller state-space approaches,
e.g., [4], which requires an entire histogram of states from
the collection of loads to update a state bin transition
model. To generate these states for control, an observer
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is designed to estimate the histogram based on aggregated
power consumption; however, in some cases, the model may
not be observable [6].

Recently, the foundational work in [4] has been extended
in several directions. For example, higher order dynamic
models and end-user compressor delay constraints and lock-
out periods have been included in [5], which inspired the
modeling of packet duration in PEM presented in this paper.
In addition, bounds on stochastic dynamical performance
have been developed in [9]. Another approach to achieve
direct load control involves mean-field theory applied to
heterogeneous TCL populations in [10]. Similarly to the
proposed work herein, the mean-field approach developed
in [6], [11] maintain quality of service (QoS) by automating
opt-out mechanisms and injecting randomization based on
local state variables, which limits synchronization effects and
promotes equitable access to the grid. However, in contrast
to those prior works, PEM does not require to broadcast
the control signal (in top-down fashion). Instead, PEM is
designed to have each load request an energy packet from
the coordinator stochastically (in a locally-driven, bottom-
up fashion) based on the load’s local state variables. The
coordinator then responds in real-time to each packet request
based on grid or market conditions.

Furthermore, related work on energy packets is given
by [12], [13], where an omniscient centralized packetized
direct load controller (PDLC) is developed for TCLs. The
average controller performance and consumer QoS is an-
alytically investigated and queuing theory is employed by
the authors to quantify the centralized controller’s perfor-
mance. In [14], a distributed (binary information) version of
PDLC is proposed that requires only (binary) packet request
information from the loads. The main drawbacks of the
distributed PDLC are that it assumes complete knowledge
of the exact number of participating packetized loads at any
given time, the allocation of packet requests from the queue
is synchronized, and the queue stores packet requests if the
packets cannot be allocated, which creates delays in service.

The contributions of this paper includes extending the
preliminary macro-model developed for a large population
of homogeneous TCLs in [7] and [8] to a diverse group of
DERs. Specifically, this paper considers TCLs and ESSs in
this diverse group. Since an ESS not only consumes power
from, but also injects power into the grid, the flexibility
provided by an ESS is bidirectional (unlike unidirectional
TCLs) and enhances the overall flexibility of the diverse
group of loads. Interestingly, the general PEM framework
presented herein seamlessly integrates different types of
flexible loads, which engenders bottom-up plug-and-play
control across different types of loads without having to
design separate control systems for each load type.

The paper is organized as follows. In Section II, PEM
fundamentals are presented. A state bin transition model that
models the population dynamics is detailed in Section III.



Section IV combines the population state bin transition
model and the PEM abstraction (equivalent to two timers that
track energy packets from accepted “consume” and “inject”
requests). This is followed by an illustration of how a diverse
population of DERs (TCLs and ESSs) under PEM engenders
greater flexibility than an all-TCL population.

II. PEM FUNDAMENTALS

PEM is illustrated by the following events:
i. A DER measures its local energy state (e.g., temperature

or state of charge).
ii. If the state exceeds some specified limits, the DER exits

PEM, reverts to a default DER control until the state is
returned to within limits, and returns to Step 1. Else,
based on the state, the DER stochastically requests to
consume or inject energy from/into the grid for a pre-
specified epoch (an energy packet) and goes to Step 3.

iii. The aggregator (or Virtual Power Plant, VPP) either
accepts or denies the DER’s request, depending on
system conditions, such as binding constraints or ref-
erence tracking error. If denied, return to Step 1. If
accepted, the TCL consumes/inject energy for the epoch
and returns to Step 1.

The closed-loop diagram shown in Fig. 1 exercises the rules
for PEM control described above.

By employing a probabilistic automata at each responsive
load that is capable of exiting PEM to guarantee consumer
Quality of Service (QoS), we inject randomization to the
load requests based on local state variables, which prevents
synchronization, guarantees consumer QoS, and promotes
fair access to the grid. Fig. 1 illustrates the closed-loop
system under PEM.
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Fig. 1. Closed-loop feedback system for PEM with Pref(t) provided by
the grid or market operator and the aggregate net-load Pdem(t) measured
by VPP.

In this paper, the DER load types of interest are EWHs and
ESSs. In a population of EWHs, the temperature of EWH n
at time t, Tn(t), is

Ṫn(t)=
P rate
n zn(t)

cρLnη
− Tn(t)− Tamb

τn
− Tn(t)− Tin

60Ln
wn(t)

(1)
where c̄ = 4.186 [kJ/kg-◦C] and ρ = 0.990 [kg/liters]
represent specific heat capacity and density of water close to
50◦C. Ln [liters] represents the total capacity of the EWH.
The input power when ON (i.e., binary zn ≡ 1) is P rate

n [kW],
heat-transfer efficiency η is assumed as 1.0, ambient losses
are described by time-constant τn, and the uncontrolled hot-
water withdrawal rate (i.e., noise) is wn [liters/min]. The
terms Tamb and Tin are, respectively, the ambient and inlet
temperatures [◦C], which are considered constant in this
paper. The dynamic state variable for ESSs, on the other
hand, is the state-of-charge (SOC), The SOC of the n ESS
in a population is described by the equation

Ṡn(t)= ηsl,nSn(t) +
(
zn(t)P rate

n + wn(t)
)
ηzn,n(t) (2)

where P rate
n is the power rate of the battery, zn = 1, 0,−1

is the hybrid state corresponding to charge/OFF/discharge,
respectively, and ηsl,n, η1,n, η-1,n represent parameters as-
sociated with standing losses and charging/discharging ef-
ficiencies, respectively. If standing losses are not considered,
ηsl,n ≡ 0. The control inputs are charge and discharge rates
[kW], which are each bounded. The SOC is also bounded by
battery capacity bounds: Sn ∈ {Sn, Sn}. Finally, the ESS
is assumed to be subject to an uncontrollable bounded back-
ground net-demand process (charging and/or discharging),
wn(t) ∈ [−P rate

n , P rate
n ].

From hereafter, the dynamic state of the nth DER in
a population is denoted by the Zn. In the discrete-time
implementation of PEM, the probability that the packetized
load n with local dynamic state Zn[k] ∈ [Zn, Zn] and
desired set-point Zset

n ∈ (Zn, Zn) requests access to the
grid during time-step k (over interval ∆t) is defined by the
cumulative exponential distribution function:

P (Zn[k]) := 1− e−µ(Zn[k])∆t,

where the rate parameter µ(Zn[k]) > 0 is dependent on the
local dynamic state. Denoting by P h

k(n|Q) the probability
that load n request a packet for consumption (h = c) or
injection (h = d) given condition Q is satisfied. The de-
pendence on the local dynamic state for the probability of
request is established by considering the following boundary
conditions:
i. P c

k (n|Zn[k] ≤ Zn) = 1, P c
k

(
n|Zn[k] ≥ Zn

)
= 0,

ii. P d
k (n|Zn[k] ≤ Zn) = 0, P d

k

(
n|Zn[k] ≥ Zn

)
= 1,

which give rise to the following natural design of a PEM
rate parameter for consuming a packet:
µ(Zn[k])

=





0, if Zn[k] ≥ Zn
mR

(
Zn−Zn[k]
Zn[k]−Zn

)
·
(
Zset

n −Zn

Zn−Zset
n

)
, if Zn[k] ∈ (Zn, Zn)

∞, if Zn[k] ≤ Zn
(3)

where mR > 0 [Hz] is a design parameter that defines the
mean time-to-request (MTTR). For example, if one desires a
MTTR of 5 minutes when Zn[k] ≡ Zset

n then mR = 1
600 Hz.

Similarly, for injecting a packet,
µ(Zn[k])

=





∞, if Zn[k] ≥ Zn
mR

(
Zn[k]−Zn

Zn[k]−Zn

)
·
(
Zn−Zset

n

Zset
n −Zn

)
, if Zn[k] ∈ (Zn, Zn)

0, if Zn[k] ≤ Zn
(4)

III. STATE TRANSITION UNDER END-USER EVENTS

This section develops a state bin transition (macro)model
for a large homogeneous population of DERs of the same
load type. In particular, the case for TCLs and ESSs are
provided for illustration. A generalized macro-model for a
diverse population of multiple DER types with charging
and discharging is developed; however, a brief preamble
is provided on the modeling of end-user events that affect
directly the individual DER.

A. Modeling of end-user events
In the case of EWHs and ESSs, end-user events correspond

to stochastic water usage and power consumption/production,



respectively. These uncontrollable events can be modeled
stochastically by employing a simple birth/death stochastic
differential equation for the process, wn(t). To clarify no-
tation, the subscript n is omitted hereafter as this section
focuses on a single DER. Assume that there exists an
appropriate probability space (Ω, P,F), where Ω is the set
of events, F a filtration, and P the probability measure of
elements in F . For this purpose, a Poisson rectangular pulse
(PRP) stochastic differential model is employed [15]. That
is,

dw(t) = (v(t)− w(t)) dN1(t)− w(t) dN2(t), (5)
where v(t) is a random variable appropriate for the type of
DER under study1 and N1 (N2) is an independent, stationary
Poisson point process with constant rate parameter λ1 (λ2),
representing the initiation (end) of a random end-user event.
For an EWH, v describes the hot water usage and can be
considered exponentially distributed with mean λ. For an
ESS, v may be a symmetric probability density function with
mean in a neighborhood of zero given that it must considers
positive and negative events.

The aggregate steady state behavior of end-user events is
now described. This behavior is employed in the next section
to compute the transition probabilities for an aggregated
system of DERs in steady state. Denote the expected value
of a random process w as w̄(t) := E[w(t)]. Due to the
independence of the processes ∆N1, ∆N2 and v in time,
one can compute the expected end-user event for each DER
as

dw̄(t)

dt
= (v̄(t)− w̄(t))λ1 + w̄(t)λ2. (6)

The solution of (6) when w(0) = 0 is

w̄(t) = E[v]
λ1

λ1 + λ2
(1− exp(−(λ1 + λ2)t))

The expected event reaches steady state as t goes to infinity.
Hence, the steady state end-user event is

w̄sst := lim
t→∞

w̄(t) =
E[v]λ1

λ1 + λ2
. (7)

The next theorem theorem describes the probability distribu-
tion of these events as the number of devices increases. For
simplicity, the end-user event are considered as independent
and identically distributed random processes.

Theorem 1: The steady state aggregation of individual
end-user events, w̄sst, is distributed in steady state as
N (µw, σw/

√
Ne), where Ne is the total number of end-

user event processes and µw and σw are the corresponding
expected value and standard deviation of the process w in
steady state.
Proof: One can derive the differential equation for the
characteristic function of w in (5) from a direct application of
the Itô chain rule for jump processes [16]. Let Fκ(w) = eiκw,
then

deiκw = (Fκ(v)− Fκ(w))dN1 + (1− Fκ(w))dN2.

By definition, the characteristic function of w(t) is
Ψw(κ, t) = E[Fκ(w)] and E(Ni(t)) = λi(t). It then follows
that
dΨw(κ, t)

dt
= Ψv(κ, t)λ1 + λ2 −Ψw(κ, t)(λ1 + λ2). (8)

1Note that v is independent of N1 and N2 and describes the intensity of
the end-user event.

In steady state, dΨw(κ,t)
dt = 0. Thus,

Ψw(κ,∞) =
λ2 + Ψv(κ)λ1

(λ1 + λ2)
.

Clearly, the moments of w in steady state can be obtained
by computing E[wn] = (−i)ndΨw(κ,∞)/dt|κ=0. A direct
application of the central limit theorem for i.i.d random
variables completes the proof given that in steady state all
end-user events are independent of each other and identically
distributed with the distribution associated to the solution of
(8). Hence one can consider, on average, that a single DER
is driven by a process w̄ ∼ N (µw, σw).

Example 1: If v ∼ exp(λ), then

µw = λp and σw = λ
√

2p− p2,

where p := λ1

λ1+λ2
.

B. The State Bin Transition Model
For the purpose of constructing a state bin transition

macro-model for a large population of DERs, consider the
a population whose dynamic states are discretized so that it
approaches the behavior of the agent-based micro-model as
the number of devices increases [17]. The transition prob-
abilities between bins are determined from the dynamical
system equations of the DERs comprising the population.
Let X = {x1, . . . , xN}, where each element is called a
state and constitute a partitioning of the state space Z
in which the DERs evolve. Assume that there exists an
appropriate probability space (Ω, P,F), where Ω is the set
of events, F a filtration, and P the probability measure of
elements in F . Then, random variables {Xk}k≥0 are defined
as Xk : Ω → X . Let xj ∈ X and denote qj [k] = P (Xk =
xj) as the probability of Xk = xj , k ≥ 0. The column
vector q[k] := (q1, . . . , qN )T then gives the probability mass
function of the random variable Xk. Also, if one denotes the
transition probability of an homogeneous Markov chain as
pij = P (Xk+1 = xi|Xk = xj), it then follows that

q[k + 1] = Mq[k], (9)
where M = {pij}1≤i,j≤N [18]. Given an initial distribution
q[0], one can solve for (9) and find the distribution at time
k as q[k] = Mkq[0].

The focus of this paper is on DERs that have hybrid
one dimensional dynamics as in (1) and (2). More specif-
ically, an interval [Zmin, Zmax] within the continuous state
space of the DER is divided into N consecutive bins each
corresponding to a bin state in X . Since (2) includes three
types of dynamics (charge/OFF/discharge) and the ON/OFF
dynamics of (1) can be seen as charging/OFF dynamics with
a disconnected/inaccessible and trivial discharging dynamics,
the state space for the system consists of three discrete state
spaces: Xc, Xoff and Xd. That is, the full state space is
given by X = Xc ∪ Xoff ∪ Xd. At time k, the probability
mass function of the system is q> = (q>c , q

>
off, q

>
d ) with

qc = (q1
c , · · · , qNc )> and qoff and qd defined similarly. Note

that q contains the percentage of the population in each state
of X . For example, if Ne is total number of DERs (coincides
with the number of end-user event processes) and N i

e,c is the
number of devices in state xic, then N i

e,c = qicNe. Similarly,
the percentage of Ne that is charging and discharging, and
the total power of the system are

yc = ccq, yd = cdq, and y = cq, (10)



where cc = (1>N , 0 · · · 0) ∈ R3N , cd = (0 · · · 0, 1>N ) ∈ R3N ,
c = NeP

rate(cc − cd) ∈ R3N , 1N = (1, . . . , 1)> ∈ RN , and
P rate is the average power consumption by the DERs.

Transition rates are computed by considering how the
dynamic state interval corresponding to a particular state is
altered by the DER hybrid dynamics.

Fig. 2. Transition rates calculation for charging (left) and discharging
(right) populations.

Fig. 3. Abstraction for (a) conventional DER control and (b) PEM control,
where self-loops are not visualized.

The main factor affecting these transition rates is the
background usage of the DERs by the end-user. However,
this usage was modeled in Section III-A as a generic birth
and death process known as Poisson Rectangular Pulse
stochastic differential model [15]. For example, one can
simulate the individual water usage by letting the random
variable v to be distributed exponentially and fitting the rates
of N1 and N2 to the average starting and ending of water
events [8]. Similarly for an ESS system one can set v to be
uniformly (or normally) distributed so that positive/negative
values correspond to charging/discharging events.

Thus, the state transition rates for the large population
are calculated considering the evolution of (1) and (2) with
respect to the average end-user event of the population. The
transition rates for the charge/OFF/discharging populations
are computed next. Dropping the subscript n in (1) and (2),
it follows for EWHs that the solution with steady state end-
user event w = w̄sst and T (0) = T0 is

T (t) = ΦT0
(t) = e−at

(
T0 −

b(z)

a

)
+
b(z)

a
, (11)

where a = 1
τ + w̄sst

60L and b(z) = Tamb

τ + Tin
60L w̄sst + P rate

c̄ρLη z.
For ESSs, since the time-horizon of interest is less than 48
hours, one can set ηls ≡ 0 and, if we assume that v is a
zero-mean random variable, one obtains w̄sst = 0. Making
S(0) = S0, one has that

S(t) = ΦS0
(t) = S0 +

(
z(t)P rateηz(t)

)
t. (12)

Furthermore, from Theorem 1, one can compute the standard
deviation σz for (1) and (2) when driven by the stochastic
process satisfying dw = w̄sst dt + σw dW (t) (W is a stan-
dard Wiener process) by solving the following differential
equation for the second moment of T and S:

ρ̇(t) = (2A(t) +B2(t))ρ(t)

+ 2Z(t)(α(t) +B(t) + β(t)) + β2(t),

where ρ(0) = Z2(0). Then σz =
√
ρ− E[Z]2. In par-

ticular, EWHs have A = −1/τ − w̄sst/(60L), α =
zP rate/(c̄ρLη) + Ta/τ + Tiw̄sst/(60L), B = −σw/(60L)
and β = Tiσw/(60L), and ESS have A = B = 0,
α = zP rateηz and β = ηzσw. For arbitrary DERs, one
can define Φc

Z0
(t) = ΦZ0(t) | z=1 , Φoff

Z0
(t) = ΦZ0(t) | z=0

and Φd
Z0

(t) = ΦZ0(t) | z=−1. Hereafter, only transitions to
adjacent bin states are allowed, which can be implemented
by establishing a bound on ∆t, as discussed in [8]. The
transition probabilities for the charging population, as shown
in Fig. 2, are computed by taking the boundaries Zi−1 and Zi
corresponding to state xic and computing Z ′i−1 = Φc

∆t(Zi−1)
and Z ′i = ΦZ

∆t(Zi). Note that in this case Zi < Z ′i. Thus,
the percentage of DERs that remain in xic, move to xi+1

c and
move to xi−1

c are, respectively, given by:

pc
ii =

Zi − Zi−1

∆Z ′i + σb + σf
, pc

i(i+1) =
Z ′i + σf − Zi

∆Z ′i + σb + σf
and

pc
(i−1)i = 1− pc

ii − pc
i(i+1).

Transition rates for the OFF and discharging dynamics are
determined similarly. Note that the DER population does not
transition to either a higher temperature (TCLs) or a higher
state-of-charge (ESSs) since these represent a higher energy
state, and, for z = 0,−1, (1) and (2) are driven by non-
negative energy losses or zero-mean bounded damping terms.
The difference between TCLs and ESSs lies in the choice of
σb and σf . For TCLs, σb = 2σz given that this value contains
95% of the distribution mass for the purpose of computing
the probabilities of transitioning between adjacent bin states.
However, for ESSs, σb = 0 due to the bounds established
on the charging rate. In addition, there is the potential for
some devices spilling over the right boundary of the interval
shown in Fig. 2 (left) when charging. This effect is non-trivial
when the end-user events affect the DER dynamics additively
fashion, which can be case for ESSs if v is nonzero-mean
random variable. Specifically in this paper, it is assumed in
Section IV-D that ESSs’ have ηls = 0 with no background
disturbance (i.e., σb = σf = 0) in addition to the imposed
charging/discharginf power limits. For TCLs, the hot water
usage events act multiplicatively via (1) and the spill-over
effect to the right of the interval boundary can be ignored
(σf = 0).

Assuming conventional hysteretic control of DERs, which
is based on keeping the local state variable (e.g., tem-
perature, state-of-charge) within a dead-band [Zmin, Zmax],
one charges a device from the OFF states when Z ≤
Zmin, turn OFF discharging devices if Z ≤ Zmin or turn
OFF charging devices in the case that Z ≥ Zmax, where
[Zmin, Zmax] = [Zset − ZDB/2, Zset + ZDB/2]. The hysteretic
control is described in Fig. 3. In the case of a population of
DERs consisting only of TCLs, the signals βc, β

−
c , βd and β−d

are always zero and the discharging states are unreachable
since TCLs cannot inject power into the grid. In the case
of a generic type of DERs, the signals βc, β

−
c , βd and β−d

are user-driven (e.g., ESSs being dispatched by owner or
electric vehicles being driven). The state diagram for the
Markov chain describing conventional DER control is shown
in Fig. 3a. The associated Markov transition matrix M for
βc = β−c = βd = β−d = 0 is

M =

(
Mc Mc,off 0N

Moff,c Moff Md,off

0N 0N Md

)
, (13)



where Mh, for h = {c, off, d}, is a tridiagonal matrix contain-
ing the probabilities of staying, going to next state and going
to the previous state, Mc,off = e1e

>
1 p

off
c , Moff,c = eNe

>
Np

c
off,

Md,off = eNe
>
Np

off
d , ei denotes the elementary vector with

its i-th component equal to 1 and all the others 0, and 0N
denotes the N dimensional zero matrix. Observe that the
Markov chain associated to M is irreducible since one can
reach any state from any arbitrarily chosen initial state. It
follows then that this abstraction possesses a unique invariant
distribution since X is finite dimensional. Nonetheless, the
conventional model lacks the flexibility inherent to PEM as
discussed in Section II.

IV. PEM BIN MODEL FOR DERS

In this section, PEM is embedded into the Markov model
for DERs developed above. Specifically, the state bin model
is augmented with a timer comprised of two counters that
capture the duration of energy packets being consumed
and injected. Finally, additional states are conveniently in-
troduced to account for the opt-out dynamics in order to
ensure end-user quality of service (QoS). This permits a
virtual power plant (VPP) operator to interact with the DER
population through the stochastic packet request mechanism.
The VPP regulates the proportion of accepted packet requests
(charging and discharging) to allow tight tracking of balanc-
ing signals. The developed macro-model compares well with
(agent-based) micro-simulations of diverse DERs under PEM
and can be represented by a controlled Markov chain. Finally,
the paper presents how the aggregate net-demand of TCLs
and ESSs under PEM is managed by a single coordinator.

A. PEM Markov Model
Under PEM, a DER can only switch to charg-

ing/discharging modes for an epoch if the corresponding
charging/discharging packet request is accepted by the VPP
coordinator. To capture the unique nature of PEM’s fixed
packet duration and VPP’s role, we leverage prior literature
on fault tolerant recovery logic [19] and TCL modeling with
compressor lockout periods [5]. In this setting, two timers
are added to the state bin transition model to track the pop-
ulation with accepted charging/discharging packet requests,
respectively. PEM control is decribed as a controlled Markov
chain.

Definition 1 ( [18]): Let {uk}k≥0 be a sequence of real
valued functions taking values on a set U . A Markov chain
{Xk}k≥0 is said to be a controlled Markov chain (CMC)
if its transition matrix M = M(u) := {qij(u)}1≤i,j≤N
satisfies
P (Xn+1 = xin+1 |Xn = xin , . . . , X0 = xi0 , un, · · · , u0)

= P (Xn+1 = xin+1
|Xn = xin , un) = pin+1in(un).

Note that the resulting matrix M(u) must be a (column)
stochastic matrix for any choice of u ∈ U . As usual, the
probability mass function of a CMC is computed similarly
using q[k + 1] = M(u[k])q[k] given an initial distribution
q[0] and control policy u(x)[k] : X → U for k = 0, 1, . . ..

The underlying transition matrix over which PEM is
implemented is given by (13), but with pc

off = poff
c = poff

d = 0
and pc

NN = pd
11 = 1. In this manner the VPP becomes the

interface between the three modes of operation.
Suppose q[k] ∈ R3N is the probability distribution

of the PEM macro-model population at time k, βc =
diag{β1

c , . . . , β
N
c } with βic ∈ [0, 1] the percentage of the

OFF-population in state xioff that is allowed to charge, βd =

diag{β1
d , . . . , β

N
d } with βid ∈ [0, 1] the percentage of the

OFF-population in state xioff that is allowed to discharge,
βc,off = diag{β1

c,off, . . . , β
N
c,off} with βic,off ∈ [0, 1] the percent-

age of the charging population in state xic that is switched
OFF, and βd,off = diag{β1

d,off, . . . , β
N
d,off} with βid,off ∈ [0, 1]

the percentage of the discharging population in state xid that
is switched OFF. The action of instantaneously switching
charging, discharging and OFF proportion of devices to a
different state in q is given by the transformation:

q̄[k] = M̄(βon[k], βoff[k]) q[k], (14)

where βon = (βc, βd)>, βoff = (βc,off, βd,off)
>,

M̄(βon, βoff) =

(
IN − βc,off βc 0N

βc,off IN − βc − βd βd,off

0N βd IN − βd,off

)
, (15)

IN denotes the N -dimensional identity matrix. Once
M̄(βon, βoff) has switched some DERs to a new
charge/OFF/discharge mode, the matrix M makes the
DERs in q̄ evolve with the natural dynamics inside each
mode of operation. It then follows that

q[k + 1] = MM̄(βon, βoff)q[k]. (16)
The next theorem simply says that the sequence {Xk}k≥0

associated to (16) is a CMC.
Theorem 2: Let βon[k], βoff[k] ∈ R2N×N be defined as in

(14) ∀ k ≥ 0. The sequence {Xk}k≥0 of random variables
Xk taking values in X and probability distribution satisfying
(16) is a controlled Markov chain as described by Defini-
tion 1 with input u[k] = (1>2Nβon[k],1>2Nβoff[k])> ∈ R4N .
Proof: The proof is straightforward since matrices in (13)
and (15) are stochastic for any βion, β

i
off ∈ [0, 1]∀i, and the

product of stochastic matrices is a stochastic matrix.

PEM control is based on the notion of charg-
ing/discharging requests of the OFF population as a function
of their current dynamic bin state (for instance, temperature
for TCLs and state-of-charge for ESSs). The number of
charging/discharging requests thus are paramount for estab-
lishing the limits of PEM and different control strategies
under PEM. Define

q̂h[k] := M̂hq[k] = diag(IN , Treq,h, IN ) q[k],

where Treq,h = diag{preq,h
1 , . . . , preq,h

N }, preq,h
i := 1 −

e−µh(Z
m
i )∆t is the request probability assigned to xioff by (3)

with respect to the mid-point of state bin i and h = {c, d}.
It is obvious that q̂h is not a probability mass function since
1>N (qc + q̂h,off + qd) < 1. Note that q̂h = (q>c , q̂

>
h,off, q

>
d )>.

Nevertheless the aggregate charge/discharge request rated,
i.e., the population that can be switched to charge/discharge,
is given by:

nh[k] := 1>N q̂ h,off[k]. (17)
It is assumed that each device cannot, in the same instance,
request to both charge and discharge. This implies that if
both packet types are requested, they simultaneously cancel
each other out and no request is made. Furthermore, for each
individual DER, since a charging and a discharging request
occur independently: Treq,c and Treq,d are replaced by
Treq,c,Cd

= Treq,c(IN − Treq,d) and Treq,d,Cc
= Treq,d(IN − Treq,c),

respectively. Thus, under PEM, the VPP determines the rate
of accepting charging (βc[k]) and discharging (βd[k]) packets.
Upon a packet being accepted by the VPP, the DER then



instantly switches to the corresponding state.
The population of devices that switch from OFF to

charge/discharge, q+, is a function of βc, βd and qoff as

q+[k] :=




0N βc[k]T
req,c,Cd

0N

0N −βc[k]T
req,c,Cd
− βd[k]T

req,d,Cc
0N

0N βd[k]T
req,d,Cc

0N


q[k] = M+

βon[k]q[k].

Observe that the vector q+[k] can be partitioned as q+[k] =
(q+

c [k], q+
off[k], q+

d [k])>. The population of DERs that switch
from charging/discharging to OFF requires information on
the rate of expiring packets. In other words, let δ [secs] be
the duration of a packet epoch, then the DERs that have been
charging/discharging for δ seconds will turn OFF. A delayed
system can be constructed based on the need of keeping track
of how many DERs started a packet δ seconds ago. Similar
to the preliminary work in [8], two sets of states (timer
states) are introduced to the system dynamics to account for
the number of charging and discharging DERs, respectively.
That is, given δ, the time step ∆t, and the two vectors of
augmented timer states xp,h ∈ Rnp with np = bδ/∆tc and
h = {c, d}, the timer dynamics is given by

xp,h[k + 1] = Mp,hxp,h[k] + Cp,h q
+
h [k], (18a)

where yp,d[k] = xp,h[k], Mp,h ∈ Rnp×np is a zero matrix
except for its first lower diagonal whose components are
1 and Cp,h ∈ Rnp×N is responsible for allocating the
new charge/discharge population into their corresponding
charge/discharge timer states. For DERs that were just
switched from OFF to charge, there is a state Zc such that
Φc
Zc

(δ) = Zmax. Therefore Cp,c interrupts packets to prevent
exceeding Zmax. More precisely, if Zi+1 < Zc, Cp,c allocates
all DERs requesting charging packets from bin [Zi, Zi+1]
into the timer state x1

p,c. Otherwise, it allocates DERs with
Zj > Zc in the timer state xjp,c with j = b(δ − tcj)/∆tc
and tcj the time that the DER takes to move its state from
Zj to Zmax – this captures packets that are interrupted due
to QoS constraints. DERs switching from OFF to discharge
similarly define the discharge timer states.

Using the information provided by both timers, one can
define the population of DERs that completed their δ-seconds
packets (charging and discharging) and therefore turns OFF
instantly as

q−[k] :=

(
β−

c [k]IN 0N 0N

−β−
c [k]IN 0N −β−

d [k]IN

0N 0N β−
d [k]IN

)
q[k] = M−β−[k]q[k], (19)

where β−h [k] := y
np

p,h[k]/(1>np
yp,h[k]) with h = {c, d}.

The charge/OFF/discharge switching events for the entire
population can be formulated as
q̄[k] := q[k] + q+[k]− q−[k] = (I +M+

β[k] −M
−
β−[k])q[k],

which yields the DER population dynamics:
q[k + 1] = M(I +M+

β[k] −M
−
β−[k])q[k]

= M̄(βon[k], βoff[k])q[k], (20)

where βon[k] = (βc[k]Treq,c,Cd
, βd[k]Treq,d,Cc

)> and βoff[k] =

(β−c IN , β
−
d IN )>. Observe that, as in [8], that there is no or-

der in which DERs are switched to charge, OFF or discharge
since this events happen instantaneously and simultaneously
every ∆t seconds. Fig. 3b shows the state diagram of the
population model under PEM control.

From Theorem 2, the following corollary follows directly.
Corollary 1: The sequence {Xk}k≥0 of random variables

Xk taking values in X and probability distribution satisfy-
ing (20) is a controlled Markov chain with input u[k] =(
1>Nβc[k]Treq,c,Cd

,1>Nβd[k]Treq,d,Cc
,1>Nβ

−
c IN ,1

>
Nβ
−
d IN

)>
.

Fig. 4. PEM macromodel with exit-ON (⊕) dynamics. ON/OFF state
transitions are controlled by VPP and illustrated with gray and blue arrows.
In the case of different classes of DERs (i.e., having several sets of bin
states for each DER class), the VPP receives all c/d requests regardless of
which population they are from.

Another advantage of the PEM approach is that every
OFF DER’s charge/discharge request may include its rated
value P raten . This information does not violate the privacy
agreement between each device and the coordinator (as it
does not provide the DER’s dynamic state) and overcomes
the challenge of estimating the rated value from the aggregate
power output. Importantly, this renders the system observable
in the sense that the coordinator can estimate the population
in each bin2.

B. Tracking with PEM DER Macromodel

Under PEM, the inputs βc and βd are exogenous and
produced exclusively by the VPP. Recall that, at each instant
of time k and for each class of request (charge or discharge),
every request is sent with its corresponding P rate,h

n value,
which imply that P rate,h := 1

n

∑βhnh
n=1 P

rate,h
n for h = {c, d}.

Also, let Pref be the VPP’s reference power signal provided
by grid or market operator and let Pdem be the aggregate
net-demand of the diverse packetized DERs measured by
the VPP. In particular,

Pdem[k] := Pc[k]− Pd[k]− POFF,c[k] + POFF,d[k],

where Pc[k] is the power drawn by all DERs that consume
power when charging, Pd[k] is the power injected by all
DERs that discharge power into the system, POFF,c[k] is the
power that DERs stop consuming after these were charging
at time k − 1 and subsequently were switched OFF at time
k and POFF,d(k) is the power that DERs stop injecting after
these were discharging at time k− 1 and subsequently were
switched OFF at time k. Given nc and nd in (17) and that
PEM tracking is activated as in Fig. 1, the inputs βc[k] and
βd[k] in Fig. 3b are generated by the VPP to minimize
tracking error, so that nc and nd are maximized at each

2Due to space constraints, observability results on the PEM Markov model
are omitted, but are based on the concepts for bilinear systems [20] and the
Popov-Belevitch-Hautus test for time-varying linear systems in [21].



k (to maximize QoS). That is, one solves the following
optimization problem:

max
ξ[k],ν[k]

ξ[k] + ν[k] subject to

ξ[k]P rate,c[k] + ν[k]P rate,d[k] = Perror[k],

0 ≤ ξ[k] ≤ nc, 0 ≤ ν[k] ≤ nd.
where Perror = Pref[k] − Pdem[k] is the VPP tracking error
and nc[k] (nd[k]) is the VPP’s total number of charging
(discharging) requests received at k.

Example 2: Assuming P rate,c[k] ≈ P rate,d[k] =: P rate[k],
one has that if Perror[k] > 0 and Pc,d[k] :=
min{nc[k]P rate[k]− Perror[k], nd[k]P rate[k]}

ξ[k] =

{
(Perror[k] + Pc,d[k])/P rate[k], nc[k] > Perror[k],

nc[k], nc[k] < Perror[k],

ν[k] =

{
Pc,d[k])/P rate[k], nc[k] > Perror[k],

0, nc[k] < Perror[k],

and when Perror[k] < 0 and Pd,c[k] :=
min{nc[k]P rate[k], nd[k]P rate[k]− |Perror[k]|}

ξ[k] =

{
Pd,c[k])/P rate[k], nd[k] > |Perror[k]|,

0, nd[k] < |Perror[k]|,

ν[k] =

{
(|Perror[k]|+ Pd,c[k])/P rate[k], nd[k] > |Perror[k]|,

nd[k], nd[k] < |Perror[k]|.

One can observe that if βc[k] = βd[k] = 0 for all k then the
state diagram in Fig. 3b becomes reducible since, after the
first np time instants, states are not able to leave their current
state class (charge, OFF or discharge states). This causes
states in the three classes to become absorbent for k →∞.
Additional states are added in a manner that DERs charge
even when the VPP sets βc[k] = 0. This exit-⊕ mechanism
is augmented to the PEM macro-model to ensure QoS as
described next.

The last item in this section involves quantifying the one
step ahead flexibility provided by PEM. One step ahead
flexibility in this context is defined as the maximum amount
of power that the population system can increase or decrease
in the next time instant. Two types of flexibility can be in-
troduced: upward flexibility and downward flexibility. These
quantities are defined by the following formulas:

flex[k] = (nc[k]− noff,c[k])P rate,c + noff,d[k]P rate,d. (21a)

flex[k] = (nd[k] + noff,d[k])P rate,d − noff,c[k]P rate,c

+ nexit-⊕[k](P rate,c + P rate,d)/2, (21b)
where noff,c and noff,d are, respectively, the number of
expiring charging and discharging packets (including inter-
ruptions) and nexit-⊕ is the number of devices leaving exit-⊕
mode. These expressions tell the amount of power that the
VPP has available for tracking a signal above and below the
current output power of the population system.

C. Exit-⊕/	 Dynamics
The end-consumer’s QoS is of paramount importance in

any large-scale DER coordination scheme such as PEM.
Therefore, when a DER’s dynamic state falls outside its pre-
determined “comfort-zone” or dead-band [Zmin, Zmax], the
device automatically opts out of PEM’s requesting scheme
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Fig. 5. Validating the homogeneous macromodel by comparing the
aggregate power (top) and internal average temperature (bottom) against
those of a homogeneous microsimulation with N = 1000 packetized
electric water heaters.

and, instead, enters exit-⊕, which temporarily reverts the
device to conventional control that drives the device’s state
back to within a pre-specified PEM opt-in interval. Once
the exit-⊕’s set-point is reached, the DER re-enters PEM’s
energy packet request scheme.

The population of DERs that exit PEM when Z < Zmin
join the exit-⊕ mode dynamics. On the other hand if the
DER is such that Z ≥ Zmax then it turns OFF by briefly
joining the trivial exit-	 mode dynamics at state x0

	 after
which the DERs transition naturally under M to the charg-
ing/discharging requesting states. In Section II, these two
modes of operation were briefly discussed for the agent based
scheme simulation. Fig. 4 shows the exit-⊕/	 states acting
on the PEM scheme. The transition rates are computed in the
exact same manner described in Section III-B. In the same
figure, Z⊕min = Zset − ZPEM. It then follows that the updated
full population dynamics for DERs under PEM are given
by (18) together with:

q[k + 1] = Mexit(I +M+
β[k] +M−β−[k])q[k], y[k] = c>q[k],

where Mexit := diag{Mexit-⊕, M̄ ,Mexit-	}, Mexit-⊕ is a ma-
trix of zeros except for the main diagonal (p⊕11, . . . , p

⊕
N⊕N⊕

)
and the first lower and upper diagonals which respectively are
(p⊕12, p

⊕
23 . . . , p

⊕
(N⊕−1)N⊕

) and (p⊕21, p
⊕
32 . . . , p

⊕
N⊕(N⊕−1)),

Mexit-	 introduces the probabilities to re-enter PEM from
xNc to x0

	 and from x0
	 to xNoff with p	pem corresponding to

the exit-	 mode, and M̄ is such that M̄ij = Mij except
for M(N+N⊕+1)N⊕ = p⊕pem, which describe the transition
probabilities to re-enter PEM from the exit-⊕ mode.

D. Diverse Macromodel and Validation

Two illustrative simulations are presented in this section,
one compares the macro-model provided in the previous
section against the agent based simulation (micro-model)
for a mixed DER population of 1000 EWHs and 300
ESSs (using the specifications of the homogeneous Tesla
Powerwall 2.0) in which all charging/discharging packets
(βc = βd = 1) are accepted followed by suddenly rejecting
all charging/discharging packets (βc = βd = 0). And the
other compares the simulation of a homogeneous TCL-only
VPP of 1300 EWHs tracking a random signal against that
of a diverse VPP of 1000 EWHs and 300 ESSs tracking
the same random signal. Both simulations are performed
over a 16 hour period with ∆t = 15 seconds and where
all the DERs had their charge/discharge 5 minute packets
accepted for the first 8.8 hours. The homogeneous TCLs
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Fig. 6. (Top) Homogeneous macro/micro-model simulation of 1300 TCLs
tracking a random signal and (Bottom) Diverse population of 1000 TCLs
and 300 ESSs tracking the same random signal under one VPP.

in this study had a set temperature of 52◦C inside the
deadband [45.75, 58.24]◦C with PEM lower bound equal to
47.84◦C. The homogeneous ESSs, on the other hand, have
SOC set point of 70%SOC inside the dead-band interval
[20, 100]%SOC with PEM lower bound of 25%SOC. To
validate the macro-model’s performance, it is compared
against a diverse (agent-based) PEM micro-model simulation
similar to [22]. It is shown through simulation that the mean
behavior of the macro-model compares well with the micro-
model simulation.

Figure 5 shows the result of the first experiment. Clearly,
the “accepting all” steady state macro and micro-model
simulations agree (modulo the stochastic variability of the
micro-model). Still the error between steady state behaviors
of macro and micro-model simulations during period of ac-
cepting all charge/discharge requests are within a reasonable
±5% of the nominal power value. A similar outcome is
observed for the error between steady state behaviors of
macro and micro-model simulations during the period of
rejecting all charge/discharge requests. The main difference
between macro and micro-model simulations is in the speed
at which the TCL population reaches steady state behavior
after start rejecting all packet requests. This is mainly due to
large end-user events for EWHs whose temperature is very
close to the lower boundary of the deadband, which results
into a very small number of devices exiting PEM regardless
of the aggregated temperature of the system. The same effect
is reflected in the QoS for TCLs whereas ESSs do not present
such issue.

The result of the second experiment is given in Fig. 6. In
the top part of the figure, a homogeneous TCL population
is trying to track a random signal. However, the system
fails due to QoS constraints. Specifically, the system is
unable to track the random power reference signal since
nd = noff,d = 0 in (21a) and (21b). From Fig. 6 and (21b), the
exit-⊕ population dominates after minute 660 and the 1300
HWHs offer no downward flexibility, which affects the TCL-
only VPP’s ability to track the random signal. On the other
hand, by adding bidirectional DERs (i.e., ESSs) with TCLs
to PEM, the downward flexibility in (21b) increases due to
discharging requests, which improves the ability of the VPP
to track the random signal. Note that the effect of adding
ESSs into the PEM game does not decrease the upward
flexibility, since ESSs can charge too. Thus, diversity in the

population is enabled seamlessly by PEM without having to
modify the automata logic at the load or the VPP control
mechanism. Clearly, the performance of the diverse VPP is
superior. Due to space constraints additional comparisons are
omitted, however, the root mean square error between macro
and micro-model aggregated dynamic states for the diverse
VPP amounts to less than 0.8◦C for the TCLs and less than
5.0% SOC for the ESSs while tracking the random signal.
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