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Abstract—Despite the infrequent occurrence of cascading
power failures, their large sizes and enormous social costs mean
that they contribute substantially to the overall risk to society
from power failures in the grid. Therefore it is important to
accurately understand the risk associated with such events.
A cascading event may be triggered by a small subset of k
components failing simultaneously or in rapid succession. While
most prior work, including our own work into an efficient
“Random Chemistry” method for risk analysis, has assumed that
components fail independently, this paper proposes a method
for deriving correlated outage probabilities such that pairs of
branches that are proximate in space are more likely to fail
together than distant ones. Combining Random Chemistry risk
analysis with this approach to correlated outage probabilities
shows that overall blackout risk can greatly increase with even
small amounts of correlation. Results from the 2383-bus Polish
test case under various load levels illustrate the substantial impact
that correlation has on blackout risk.

Index Terms—blackout risk, cascading failure, cascading out-
age, correlated outages, Random Chemistry

I. INTRODUCTION

A cascading power failure occurs when a small number of
components in a power grid fail, setting off a chain reaction of
subsequent component failures that can lead to large blackouts.
Cascading power failures are rare events, but their vast size
means they pose a significant risk to power grids [1]–[3].
Reliability regulations require that power systems be operated
to be robust to single component failures (N − 1 security)
and increasingly require that grid operators make plans to
ensure N − k security [4]. There is, however, no guarantee
that sets of two or more components failing together will not
cause a cascade. Sets of k simultaneous outages are typically
referred to as N − k contingencies. Furthermore, mechanisms
such as “hidden failures” can exacerbate the risk and impact
of cascades [5]–[7]. In this paper, we consider only branch
outages. We refer to sets of k branch outages that initiate a
cascading failure as N − k malignancies whereas sets of k
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branch outages that do not cause a cascade are referred to as
benign contingencies.

The combinatorial search space of N − k contingencies
makes it difficult to estimate risk in a computationally tractable
manner. A number of existing papers propose methods for
quantifying the risk of cascading failure [8]–[13]. A limitation
of most prior approaches (including our own) is the assump-
tion that branch outages are independent events [1], [11], [12],
[14], [15].

In reality, branch failures are unlikely to be independent
when a common cause is responsible for the outages. For
example, damage caused by weather-related disturbances may
be spatially correlated [16]. Protection system failures can
sometimes cause multiple outages within a small geographic
region [17]. Similarly, terrorist attacks may be spatially local-
ized. This type of geographical correlation was handled in [18]
by assuming 100% correlation of outages within a fixed radius.
In [16] spatial correlation was achieved by probabilistically
determining failure rates of lines adjacent to initial failures
according to a Poisson process. In [19], a random field with
spatial autocorrelation was used in a cascade model to assess
risk from common-cause events. Correlation between outages
can also be associated with non-spatial attributes such as
component age [20].

Another way to correlate component failures is though
copula analysis. Copulas have been applied in many fields,
such as finance [21], neuroscience [22], and climate research
[23]. Within the realm of power systems, copulas are a popular
tool for uncertainty analysis, such as in [24]. In [25], Li
suggests copulas as a useful way to incorporate correlation
between random variables in power systems risk analysis.
Here, we will present the use of a Gaussian copula and show
that incorporating even modest levels of correlation can greatly
increase the risk associated with cascading failures.

A. Finding Triggering Events with “Random Chemistry”

In [26] we introduced an efficient (O(logN)) stochastic set
size reduction algorithm referred to as “Random Chemistry”
(RC) for identifying small minimal sets of initiating events that
trigger some outcome of interest. In [27] we applied RC to the
problem of identifying minimal N − k malignancies that lead
to cascading failures in power grids (Fig. 1), where N is the
total number of branches in the power system. In [11], [12],
[15] we showed that RC can be used to efficiently estimate
the system-wide risk of large cascading failures in power
grids. A comparison of risk estimation to Monte Carlo (MC)



simulation on a model of the Polish system at peak winter load
[28] showed that the RC approach is at least two orders of
magnitude faster than MC, and does not introduce measurable
bias into the estimate [12], [15]. Simulations were conducted
using DCSIMSEP, a simulator of cascading outages leading
to network separation in power systems [29]. We found that
a small number of branches disproportionately affect overall
risk. In these previous works we assumed uncorrelated branch
outages; here, we relax that assumption and generalize this
approach to systems with correlated outages.
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Figure 1. Schematic of the RC algorithm applied to finding a minimal N−k
malignancy in a power system (abstracted from [27]).

B. Estimating Risk

For any given set of branches ω that cause a cascading
failure, risk can be calculated as:

Rω = pωsω (1)

where pω is the joint probability of the branches in ω failing
and sω is the size of the resultant blackout. Note that pω is
itself a function of pi, the independent outage probability for
each branch i, and any effect of correlation among branch
outage probabilities. In this paper, sω is quantified as the total
power (MW) unserved due to load shedding. The total risk
posed to the system by N − k malignancies, for a given k, is
then:

Rk =
∑
ω∈Ωk

Rω (2)

where Ωk is the complete set of all N − k malignancies for
each k ≥ 2. The overall risk R of cascading failure due to all
k ≤ kmax is thus:

R =
∑

k∈{2..kmax}

Rk (3)

The RC (or any other) algorithm is unlikely to find the entire
set Ωk for k > 2 on realistically sized systems, because of
the computationally intractable sizes of these sets. However,
various approaches have been used to estimate the number
of N − 3 malignancies |Ω3| from changes in the rate of
identification of new unique N − 3 malignancies. This can
then be used to project system risk for kmax = 3 from the
identified sets of N − 2 and N − 3 malignancies [15], [27].

II. COPULA ANALYSIS

Nelsen [30] defines copulas as “functions that join or couple
multivariate distribution functions to their one-dimensional
marginal distribution functions”. Given a set of k random
variables, X = [X1, X2, . . . , Xk], where Pr(Xi ≤ ti) is the
marginal probability that branch i fails, for some threshold ti,
then

FX(T) = Pr

(
k⋂

i=1

Xi ≤ ti

)
(4)

where T = [t1, t2, · · · , tk], represents the joint probability
that all k branches fail together. Without loss of generality,
we assume that ti = 0 for all i. There are numerous classes
of copula functions in popular use. For this proof-of-concept
study, we assume a Gaussian copula. Alternative distributions
may be assumed where appropriate.

We make the application to branch outages by assuming that
the (inverse) stress on a line i is a univariate Gaussian random
variable Xi = N (µi, σi) with the cumulative distribution
function:

FXi
(xi) =

1

2

[
1 + erf

(
xi − µi

σi
√

2

)]
(5)

Given that the independent probability of branch i failing is pi,
we can choose µi and σi such that when Xi goes below zero,
the branch fails. In other words, we choose µi and σi such
that Fxi

(0) = pi for each branch i. Without loss of generality,
we can assume µi = 1 for all i and then solve for each σi, as
follows:

σi =
−1

erf−1(2pi − 1)
√

2
(6)

Now that we have constructed the univariate marginal distri-
butions for each branch, we can use a multivariate normal
distribution X = N (µ,C) with mean µ = [µ1, µ2, . . . , µk]
and covariance matrix C as our copula function (Fig. 2).

In this study, we assume the correlation between failures
in branches i and j decays exponentially with the distance
between them dij , according to:

ρij = ρoe
−dij/L (7)

where ρo represents the maximum possible correlation coef-
ficient (at distance zero) and L represents the characteristic
length, which controls the decay rate of the correlation.
L can be interpreted as the distance at which ρij reaches
e−1 ≈ 36.8% of ρo (Fig. 3).

The parameters ρo and L can be used to tune the strength
of the correlation as desired. We use the standard deviations
σi and σj calculated by (6) and the correlation coefficient ρij
calculated by (7) to calculate the pairwise covariance between
branches i and j as:

cov(i, j) = ρijσiσj (8)



Figure 2. A visual depiction of the copula method for two components
with hypothetical Gaussian distributions, Xi and Xj . The curves on the
vertical planes represent the marginal distributions of each component, with
the shaded regions of these curves, (Xi ≤ 0) and (Xj ≤ 0), representing the
failure state for each component. The shaded gradient on the horizontal plane
represents the density of the joint distribution (copula) of the two variables,
with darker shading representing higher density. The probability mass within
the red hatched area represents the region of system failure (X ≤ 0), with
the red dotted line depicting the boundaries of this region.
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Figure 3. Change in the correlation between two branches as a function of
the distance between them, assuming (7) with characteristic length L = 2000
and correlation ρo for branches that are 0 units of distance apart.

Using (8) to find each element of the covariance matrix C, we
can then use the probability density function of the multivariate
normal distribution (9) to form our copula.

f(x) =
1√

(2π)k|C|
exp

{
−1

2
(x− µ)>C−1(x− µ)

}
(9)

Using our copula function, FX(0) will represent the joint
probability of system failure Pr(X ≤ 0), when all k com-
ponents fail together. To calculate FX(0) we integrate over
the region in the joint distribution that represents failure of all

system components.

FX(x) =

0∫
−∞

0∫
−∞

· · ·
0∫

−∞

f(x1, x2, . . . , xk) dx1 dx2 . . . dxk

(10)

The multiple-integral in (10) represents the generalized solu-
tion for arbitrary k. In this work, we consider only k = 2
and solve the resultant double-integral numerically using the
vectorized adaptive quadrature method [31].

III. CASE STUDY

We extend our previous work assessing cascading failure
risk [11], [12], which also used the Polish test case at peak
winter load [28], to account for spatially correlated outages.
As previously noted, in this proof-of-concept study we only
consider N − 2 malignancies and assume Gaussian copulas.
However, the approach is readily generalizable to greater
values of k (assuming |Ωk| can be estimated) and/or alternative
distribution functions.

Simulations were conducted using the 2383-bus, 2896-
branch Polish power system, at the 1999 peak winter load,
which is available via the MATPOWER simulation package
[28]. As described in [11], [12], we made several modifications
to this test case, including an increase in line limits by a
factor of 1.05 above the pre-contingency line flows that occur
when the system is at 1.10 times actual load. This change was
made to ensure that this “base case” is N −1 secure. We then
examined loads that were 55% to 115% of the base case, to
assess how risk changes under varying load conditions.

The true spatial locations of branches and buses are not
publicly available for this test case, so hypothetical locations
were inferred based on a graph layout of the grid topology,
assuming branches are straight lines between buses (Fig. 4).

Figure 4. Synthetic geographic layout of the Polish test case (in arbitrary
units).

Since the network topography used is thus artificial, all dis-
tances are considered to have “arbitrary units”. Additionally,



as described in [11], [12], we assigned branch failure rates
randomly from a normal distribution with the same mean and
variance as those provided by the RTS-96 test case [32], since
these rates were unavailable for the Polish grid.

A. Distance Metric

The appropriate definition of “distance” may vary depending
on the type of common cause threating the system. Without
loss of generality, we employ a proximity-based metric that
assumes branches are straight lines. Consider branches U with
endpoints (u1, u2) and V with endpoints (v1, v2). Let the
distance from U to V be defined as

Dist(U, V ) =

∑2
i=1 d(ui, V ) +

∑2
i=1 d(vi, U)

2
(11)

where d(ui, V ) is the minimum euclidean distance from the
point ui to the line segment V = (v1, v2), as illustrated in
Fig. 5.

Figure 5. Visual example for calculating the distance between branches U
and V with endpoints (u1, u2) and (v1,v2), respectively.

In this formulation, it is worth noting that d(ui, V ) 6=
d(vi, U). This makes sense when considering branches of
different lengths. For example, consider branches A and B in
Fig. 6. All of B’s span overlaps with A while only a portion
of A’s span overlaps with B, so it follows that B is in some
sense closer to A than A is to B. This asymmetry is handled by
averaging d(ui, V ) and d(vi, U) in (11). This distance metric
conforms with what would be intuitively expected when con-
sidering spatially correlated damage, as seen in Fig. 6, where
Dist(A,B) > Dist(C,D) and Dist(E,F ) > Dist(G,H).

Figure 6. Branch pairs used for pairwise distance examples described in the
text.

Using this metric, a pair of branches will have distance 0
only if they are parallel branches between the same buses.

This definition of distance can be extended to larger subsets
of branches by taking the average of the pairwise distances:

Dist(U1, U2, . . . , Uk) =
2
∑k−1

i=1

∑k
j=i+1 Dist(Ui, Uj)

k(k − 1)
(12)

The distribution of pairwise branch distances in the 2896-
branch Polish grid, according to (11) and assuming the topog-
raphy shown in Fig. 4, is shown in Fig. 7. Branch pairs that
cause cascading failures are relatively rare, with only 0.013%
of branch pairs comprising N−2 malignancies. While there is
a significant relationship between branch distance and blackout
size (p < 0.01), the amount of difference explained by branch
distance is very low (R2 = 0.019). However malignant pairs
tend to be much closer to each other than benign pairs (Fig.
8), as supported by a two-sample Kolmogorov-Smirnov test
on the two distributions (p� 0.01). This tendency for branch
pairs in N−2 malignancies to be close together will exacerbate
the impact of spatial correlation to our cascading failure risk
calculations.

Figure 7. Distribution of pairwise branch distances in the Polish grid using
the proposed proximity-based distance method, in arbitrary units.

B. Results

The total system risk contributed by N − 2 malignan-
cies was calculated for spatially correlated branch outages
across a range of scenarios. Risk was calculated for vary-
ing load levels from 55%-115% of 2004 peak winter load
in the adjusted Polish grid, for all combinations of L ∈
{0, 500, 1000, 1500, 2000} and ρo ∈ {0, 0.05, 0.10, 0.15}.

Changes in the total system risk as a function of load at
L = 2000 (the longest characteristic correlation length tested),
over the different values tested for ρo, are shown in Fig. 9. As
noted in [12], risk varies non-monotonically with load, in part
due to variations in the proximity of generation to demand
that result from optimal power flow dispatch at different load
levels. With this characteristic length, even at ρo = 0.05, risk
in the correlated case from load levels 98%-111% surpass
the maximum risk seen in the uncorrelated case at any load
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Figure 8. Comparison of distance between branches pairs that form N − 2
malignancies vs. benign pairs that do not lead to cascading failure, using the
proposed proximity-based distance metric from (11). The horizontal red line
on the boxplot represents the median, the top and bottom of the blue box
represent the 25th and 75th quartiles, respectively, and the red “+” signs are
outliers.

level tested (up to 115%). The highest overall system risk
found occurred at 105% load with L = 2000 and ρo = 0.15,
where risk increased 225% over the uncorrelated estimate. The
greatest relative increase in risk, as a function of ρo, occurred
at the lowest load levels, where overall system risk was lowest.
However, the greatest absolute increases in risk, as a function
of ρo, occurred at load levels of 95%-112%, where there were
the most N − 2 malignancies. For a given load level, risk
increases faster than linearly as ρo increases (Fig. 10).

Just as ρo can influence risk, so too can the characteristic
length (L), as shown in Fig. 11. Results are included from
load levels 80%-115% for ρo = 0.15. As expected, increasing
L for a given ρo increases risk. However, in this case the
rate of increase is non-monotonic, with the largest increases
at intermediate values of L (Fig. 10), because the effect of
increasing L diminishes as L approaches the diameter of the
grid topography.

It is also informative to investigate the degree to which
each branch contributes to overall risk as a function of
spatial correlation. Given branch i with independent outage
probability of pi, we can measure i’s contribution to total risk
posed by N −k malignancies by finding the sensitivity, Sk(i)
of risk to pi. As discussed in [11], [12], this equates to a partial
derivative of risk with respect to pi. Here, we estimate these
sensitivities using a finite difference approximation:

Sk(i) =
∂Rk(pi)

∂pi
≈ Rk(pi + ∆pi)−Rk(pi)

∆pi
(13)

where Rk(pi + ∆pi) is the total risk of the system posed by
N − k malignancies when pi is increased by a small amount
∆pi. In our calculations, we used ∆pi = 10−15; empirical
tests showed that further decreasing ∆pi did not substantially
change the results. Branch sensitivities were calculated at the

Figure 9. Overall system risk posed by spatially-correlated N − 2 malignan-
cies with a characteristic correlation length of L = 2000 and various values
of maximum correlation ρo, at load levels that are 80%-115% of the 2004
Polish peak winter load.

Figure 10. Comparing change in total system risk for varying L (ρo fixed at
0.15) vs. varying ρo (L fixed at 2000) for the 100% load level of the 2004
Polish peak winter load

100% load level with ρo = 0.15 and L = 500. Branch
sensitivities in the correlated case described above are approx-
imately 1.4 times that of the uncorrelated case (Fig. 12). The
overall relative order of branch sensitivity is largely, but not
entirely, preserved (Spearman’s rank correlation rs = 0.947).
For example, if we look just at the ten most sensitive branches
(i.e., those of greatest concern) there are notable changes in the
relative ordering of branch sensitivity between the uncorrelated
and correlated case (rs = 0.758).

IV. DISCUSSION

A number of recent papers on cascading failure risk assume
that branch outages are statistically independent events. This
assumption neglects the possibility of common cause failures
such as relay failures, weather events, or terrorist attacks.
This paper presents a systematic method to account for spatial
correlations among branch outages. The copula-based method



Figure 11. Overall system risk posed by spatially-correlated N−2 malignan-
cies with a maximum correlation coefficient of ρo = 0.15 and various values
of characteristic correlation length L, at load levels that are 80%-115% of the
2004 Polish peak winter load. .
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Figure 12. Comparison of branch sensitivities for each branch in uncorrelated
(L = 0) vs. correlated (L = 500) risk estimates associated with N − 2
malignancies in the Polish Grid at 2004 peak winter load, and with ρo = 0.15.

described and demonstrated here is general in that it can be
tailored to the details of a specific power system and dis-
turbance category. Parametric choices include the correlation
function and associated constants, the distance metric, and the
distribution of the copula function.

The application of the method to a large power systems test
case shows that even small correlations between component
failures can lead to significant increases in system risk posed
by N−2 malignancies. This increase in risk is exacerbated by
the fact that branch pairs that are close together in this system
are more likely to cause cascading failures than are branch
pairs that are farther apart.

Prior studies have shown that, in the spatially uncorrelated
case, the sensitivity of risk to individual branch outages

exhibits a very heavy-tailed distribution, with a few branches
contributing disproportionately to risk [12]. Adding spatial
correlation to branch outages magnifies this disparity in the
relative contributions of each branch to the overall system risk.
Futhermore, the relative sensitivity of risk to different branch
outages can differ between the uncorrelated and correlated
cases, especially in the branches with the highest sensitivi-
ties. These observations may have important implications for
proposed strategies to mitigate risk by reducing the flow on
the most sensitive branches [11].

The results presented in this paper suggest that practical
approaches to N − k cascading failure risk is possible. Re-
liability regulations (e.g., NERC TOP-004-1.R3) increasingly
require that transmission system operators study and protect
their systems against the risk of cascading failures triggered
by N − k outages. The method presented here has sufficient
computational efficiency to be useful in operations planning
tools that quantify the risk of N−k events and quickly identify
important sources of that risk. A key element needed to make
this sort of tool practical is better data about the probability of
transmission branch outages and the ways in which different
types of common causes impact those probabilities. Some data
that would be helpful for tuning this model are available to
industry through systems such as the NERC TADS database,
but these data are not typically available for research.

Future work will study the impact of parametric choices and
design details on risk in a variety of test cases, including those
with more accurate geographical data (e.g., [33]), and will
apply a more sophisticated AC cascading failure simulator.
In addition, we will extend this work to analyze spatially
correlated N − k malignancies for k > 2. This will yield
insights as to whether spatial correlation increases or decreases
the relative importance of higher-order N − k malignacies
on risk, with important practical implications for methods
designed to estimate the risk of cascading failures.
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