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Abstract—This paper presents the systematic analysis of a
population of diverse distributed energy resources (DERs) coor-
dinated using a bottom-up approach known as packetized energy
management (PEM). Particularly, for the aggregation of DERs
modeled as a bilinear system, a simple discrete-time control law is
provided that maximizes the number of accepted requests while
tracking a regulation signal provided by a regional transmission
operator. Moreover, the mechanics of energy packet completion
rates under persistent inputs and the definition of a nominal
quality of service (QoS) controller for PEM are provided. Finally,
the observability of the PEM system is addressed including an
implementation of the extended Kalman filter (EKF) for state
estimation of the dynamic state of a diverse DER population.

Index Terms—Flexibility, distributed energy resources, packe-
tized energy management, observability, modeling.

I. INTRODUCTION

At high levels of renewable generation, today’s operating
paradigm for reliably managing the variability of wind and
solar generation requires having more responsive energy re-
sources. One way to provide such resources is to consider
an active role for flexible and controllable net-load energy re-
sources at the residential level, e.g., thermostatically-controlled
loads (TCLs), energy storage systems (ESSs), and plug-in
electric vehicles (PEVs). While the core concepts underlying
modern demand-side management (DSM) have existed for
decades, the technology for aggregating and choreographing
distributed energy resources (DERs) is nascent [1], [2].
Literature Review: More recently, the authors in [3] illus-
trated how controllable loads could be used in transmission
and distribution system operations to manage the variability
from renewables. The work in [4] expanded on these principles
by injecting randomization into the control of a state bin
transition model for a (homogeneous) population of TCLs.
An N -dimensional control input is computed and broadcast
in top-down fashion to all devices. The control input defines
the ON/OFF switching probabilities for each of N temperature
bins and devices then map their local temperature to a binned
value and switch ON/OFF with given probability. While this
framework depends on solving a challenging bilinear state-
estimation problem and may not always be observable [5],
it has been analyzed and extended to include interesting use
cases [6]–[8]. Related works with state bin transition models of
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TCLs have also focused on higher order models [9], compres-
sor constraints [10], and analyzing the modeling uncertainty
resulting from heterogeneous populations [11]. Work by [5]
offers an interesting alternative approach of employing mean-
field control to develop a SISO model of a (homogeneous)
fleet of pool-pumps [12] or batteries [13]. The mean-field
approach leverages a local randomized control policy whereby
the central coordinator computes and broadcasts (in top-down
fashion) a scalar control input that perturbs each device’s
local ON and OFF state transition rates to regulate the fleet’s
aggregate power output. The authors have extended this work
to consider estimation of quality-of-service (QoS) and opt-
out control modes [14]. Nonetheless, the mean field approach
depends crucially on a baseline response that may be chal-
lenging to validate. A second order linear model of TLCs
is developed in [15], where direct load control (DLC) of air
conditioners (A/Cs) is investigated for variable ambient con-
ditions and offers an intriguing path for system identification
of heterogeneous systems.

PEM leverages packet-based strategies from random access
communication channels, which have previously been applied
to the distributed management of wireless sensor networks
(i.e., a multi-channel ALOHA protocol). Under PEM, energy
is delivered to a load via multiple fixed-duration/fixed-power
“energy packets,” similar to how digital communication net-
works break files into data packets. In contrast to those prior
works, PEM does not broadcast a control signal (in top-down
fashion). Instead, PEM is designed to have each load request
an energy packet from the coordinator stochastically based on
the loads local dynamic state (in a bottom-up fashion). The
central coordinator then responds in real-time to each packet
request based on grid or market conditions. Related work on
energy packets is given by [16], where a distributed (binary
information) packet control algorithm is proposed that requires
just binary information from each load at each time instant.
The main drawbacks of the binary control protocol are the
assumption of complete knowledge of the exact number of
participating packetized loads at any given time, the autho-
rization of packet requests from the queue is synchronized,
and the queue stores packet requests if the packets cannot
be allocated, which creates delays in service. Other discrete
“packet” scheduling algorithms include the regulation of dis-
crete energy demands in [17] and an IoT-inpired approach to
regulate discrete step-changes in temperature set-points for a
population of A/Cs [18].

This paper presents systematic analysis for a model of
the aggregate system response (i.e., a bilinear discrete-time
Markov chain) of a population of diverse classes of DERs,
including TCLs and ESSs.
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Contributions:
• A simple mean-field-inspired control law is implemented

for real-time tracking of reference power signals. This
control law modulates packet acceptance ratios which allows
PEM to correct tracking errors with only a three inputs:
aggregate power, number of charging requests, and number
of discharging requests. Here, it is shown that PEM can
minimize tracking error while maximizing the acceptance
of requested charging and discharging energy packets.

• Calculating flexibility levels depends on the mechanism for
expiring packets, which is handled by two deterministic
timers within the PEM scheme. A theoretical upper bound
on expiring packet ratios is derived and it is shown that
the proportion of packets that are expiring does not vary
significantly during tracking if the system is not stressed
(i.e., DERs do not opt-out of PEM en masse).

• The nominal response of the PEM system is explicitly
characterized in terms of a stationary distribution in a
manner that QoS constraints are satisfied for the average
residential DER owner.

• Finally, observability of the bilinear discrete-time model that
underpins PEM is investigated. An Extended Kalman Filter
is deployed to estimate the dynamic distribution of a diverse
DER population.
The paper is organized as follows. Section II provides a

succinct summary about PEM and the aggregated model. In
Section III, a reference-tracking controller that maximizes the
number of accepted requests is presented. Properties of the
PEM system related to mechanics of packet completion rates
and nominal quality of service (QoS) control is presented in
Section IV. Section V studies observability and provids an
EKF implementation for the PEM system. The final section
concludes the paper.

II. PACKETIZED ENERGY MANAGEMENT PRELIMINARIES

At the local level, DERs manage packet requests similarly
to how data packets are managed in communication networks.
At each DER, randomization is injected to the packet request
process based on its local dynamic state, which limits syn-
chronization between DERs and promotes equitable access to
the grid. In addition, the DER is endowed with opt-out logic
to guarantee quality of service (QoS) for the end-consumer
(e.g., no worse than conventional device control). Figure 1
illustrates the standard closed-loop system under PEM.

The following high-level description summarizes the
bottom-up approach that is PEM and is detailed in [19], [20]:
1. A DER measures its local dynamic state (e.g., energy).
2. If the state exceeds a locally defined limit, the DER exits

PEM, reverts to a default DER control mode until the state
is returned to within limits and returns to Step 1. Else,
based on the state, the DER probabilistically requests to
consume (inject) energy at a fixed rate from (into) the grid
for a pre-specified epoch (i.e, an energy packet).

3. The aggregator (or Virtual Power Plant, VPP) either ac-
cepts or denies the DER’s packet request based on grid or
market conditions, such as power reference tracking error
or grid capacity constraints. If request is denied, return to
Step 1. If accepted, the DER consumes (injects) energy for
the epoch and returns to Step 1.

Figure 1. Closed-loop feedback system for PEM with Pref(t) provided by
the grid or market operator and the aggregate net-load Pdem(t) measured by
VPP.

In a fleet of diverse DERs (e.g., TCLs and batteries), one
considers that the general discrete-time dynamic model for the
n-th DER having energy state zn is given by

z+
n = fn(zn, φn, P

rate
c,n , P

rate
d,n , wn), (1)

where fn is some one-dimensional nonlinear mapping (usually
linear or bilinear), wn is the parameter mapping end-consumer
usage to the energy state, P rate

c,n and P rate
d,n are the energy transfer

rates of the n-th DER when charging (c) or discharging (d),
respectively, and φn is the hybrid state corresponding to the
set of modes {charge, standby, discharge} [19], [20]. In this
paper, the focus is put on TCLs (electric water heaters or
EWHs) and ESSs. For example, when the n-th ESS has
wn = 1 and P rate

c,n , P
rate
d,n > 0, (1) becomes

z+
n = ηsl,nzn + ηc,nP

rate
c,n − ηd,nP

rate
d,n , (2)

where ηsl,n, ηc,n, and ηd,n are the standing losses, charging,
and discharging parameters, respectively.

The probability that the n-th packetized DER with local
dynamic state at time k, satisfying zn[k] ∈ [zn, zn] and
desired set-point zset

n ∈ (zn, zn) requests access to the grid
during interval ∆t is defined by the cumulative exponential
distribution function P (zn[k]) := 1− e−µ(zn[k])∆t, where the
rate parameter µ(zn[k]) > 0 is dependent on the local dynamic
state. Denoting by P h

k(n|Γ) the probability that load n requests
a packet for consumption (h = c) or injection (h = d) given
condition Γ is satisfied. The following boundary conditions
establishes the dependence between local dynamic state and
the request probability:
i) P c

k (n| zn[k] ≤ zn) = 1 P c
k (n| zn[k] ≥ zn) = 0,

ii) P d
k (n| zn[k] ≤ zn) = 0 P d

k (n| zn[k] ≥ zn) = 1.
For an ESS consuming (c) packets for ESS, i) gives
µ(zn[k])

=


0, if zn[k] ≥ zn
mR

(
zn−zn[k]
zn[k]−zn

)
·
(
zset
n −zn
zn−zset

n

)
, if zn[k] ∈ (zn, zn)

∞, if zn[k] ≤ zn
(3)

where mR > 0 [Hz] is a design parameter that defines the
mean time-to-request (MTTR). For example, if one desires a
MTTR of 5 minutes when zn[k] ≡ zset

n then mR = 1
600 Hz. The

design of µ(zn[k]) for injecting a packet is described in similar
fashion, but with boundary conditions ii) above. Figure 2
maps boundary conditions to charging and discharging packet
requests.

In [20], a bin transition model was developed for a popula-
tion of diverse DERs under PEM. The model is provided below
for the sake of completeness. Let X̄ = {x1, . . . , xN} con-
stitute a consecutively ordered partitioning of [z, z]. Assume
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Figure 2. Illustrating the charge/discharge energy packet request rates and
MTTR for a generic packetized load. Note that (3) is represented by the blue
line (left to right top plot). Top plot gives the effect of local state zn (e.g.,
state-of-charge) on the packet request probabilities and bottom plot provides
the corresponding MTTR of a packetized DER under PEM.

that there exists an appropriate probability space (Ω, P,F),
where Ω is the set of events, F a filtration, and P the
probability measure of elements in F . Then, random variables
{Xk}k≥0 are defined as Xk : Ω → X . Let xj ∈ X and
denote qj [k] = P (Xk = xj) as the probability of Xk = xj ,
k ≥ 0. The column vector q[k] := (q1, . . . , qN )T then gives
the probability mass function of the random variable Xk.
Also, the transition probabilities between states are denoted as
pij = P (Xk+1 = xi|Xk = xj). Since (1) includes three types
of dynamics (i.e., charge/standby/discharge), the state space
for the system consists of the union of three identical copies
of X̄ . That is, the full state space is given by X = Xc∪Xsb∪Xd.
At time k, the probability mass function of the system is
q> = (q>c , q

>
sb , q

>
d ) with qc = (q1

c , · · · , qNc )> and qsb and qd
defined similarly. Note that q contains the percentage of the
population in each state of X .

The bilinear system equations are then

q[k + 1] = M
(
I +M+

β[k] +M−β−[k]

)
︸ ︷︷ ︸

=: M̃
(
β[k], β−[k]

) q[k], (4a)

y[k] = c>q[k], (4b)
where the two-dimensional control signal β := (βc, βd) defines
the proportion of DERs moving from standby to charge (c) and
discharge (d), and β− := (β−c , β

−
d ) is the proportion of DERs

whose charge (c) and discharge (d) packets end and return to
standby. The matrix M := diag{Mexit-⊕, M̄ ,Mexit-	}, where
Mexit-⊕ correspond to the natural transition of the opt-out
population and Mexit-	 introduces the transition probabilities
to re-enter PEM in standby mode,

M̄ =

 Mc Mc,sb 0N

Msb,c Msb Md,sb

0N 0N Md

, M−β :=

 β−
c IN 0N 0N

−β−
c IN 0N −β−

d IN

0N 0N β−
d IN

,
M+
β :=

0N βcT
req,c,Cd

0N

0N −βcT
req,c,Cd
− βdTreq,d,Cc

0N

0N βdTreq,d,Cc
0N

,
the diagonal blocks in M̄ (i.e., Mh, for h = {c, sb, d}) are
tridiagonal matrices describing the state bin transition proba-

bilities, the off-diagonal blocks are given by Mc,sb = e1e
>
1 p

sb
c ,

Msb,c = eNe
>
Np

c
sb, Md,sb = eNe

>
Np

sb
d , ei denotes the i-th

standard basis vector, 0N and IN are the standard N×N zero
and identity matrices, Treq,c,Cd

is a diagonal matrix containing
the probabilities of charging packet requests given that no
discharging request has been made using (3), and Treq,Cc,d is
a diagonal matrix containing the probabilities of discharging
packet requests given that no charging request has been made.
In particular, Mexit-	 and Mexit-⊕ ensure that the dynamic state
of DERs remain within the specified limits.

Modeling the evolution of the number of active DER
charging and discharging packets in the system introduces two
sets of timer states (c and d). That is, given packet epoch
δ, the sampling time step ∆t, and two timer states vectors
xp,h ∈ Rnp with np = bδ/∆tc and h = {c, d}, the timer
dynamics are given by

xp,h[k + 1] = Mp,hxp,h[k] + Cp,h q
+
h [k], (5)

where q+
h := βhTreq,hqsb = βhq̄

h
sb, Treq,c = T

req,c,Ad
,

Treq,d = Treq,Cc,d
and Cp,h ∈ Rnp×N is responsible for

allocating the new charge/discharge population into their
corresponding charge/discharge timer states. The number of
charging/discharging packet requests received by the VPP is
then nh

r := 1>N q̄
h

sb with h = {c, d} and 1N = (1, . . . , 1)> ∈
RN . The timer provides the formula for the percentage of
DERs whose packet expires. That is, β−h := x

(np)
p,h /

∑np

i=1 x
(i)
p,h,

where x(i)
p,h is the i-th component of xp,h. A depiction of a DER

population under PEM is provided in Fig. 3.

  

  
  

 

Figure 3. Transition diagram of a DER population under PEM.

III. REFERENCE TRACKING AND PACKET REQUESTS

This section provides an explicit control law for real-time
reference tracking by the aggregated PEM system described
in Section II. The control law determines the proportion of
charging and discharging requests that are accepted (i.e., β =
(βc, βd)) and is straightforward: 1) measure the tracking error
(reference signal minus net-demand) and 2) accept enough
requests so that this error is minimized. This logic is similar



to a relay-based control system, except the “relay” in the PEM
macroscopic model is continuous in [0, 1], which reflects the
underlying binary response logic from the VPP to the device’s
request: {deny, accept}. That is, the VPP indirectly transitions
proportions of the DER population between different modes
while keeping DERs completely anonymous and avoid priori-
tizing requests from certain bins over the rest. Recall that for
each time step k, each request can include its corresponding
charge/discharge energy transfer limit, e.g., P rate

h,n , which pro-

vides the VPP with the estimate P rate
h := 1

βhnh
r

∑βhn
h
r

n=1 P
rate
h,n for

h = {c,d}. Let Pref be the reference power signal provided by
some grid or market operator and let Pdem be the measured
VPP net-load. The two scalar control inputs βc and βd are
generated by the VPP to minimize the tracking error and at the
same time maximize the number of accepted charging requests
χc and discharging requests χd. That is, the VPP solves the
following quadratic programming problem for time step k:

χ∗c , χ
∗
d = argmin

χc∈[0,nc
r[k]]

χd∈[0,nd
r[k]]

(F(χ)[k])
2 (6)

where F(χ)[k] = χcP
rate
c [k] − χdP

rate
d [k] − ε[k] and ε[k] :=

Pref[k] − Pdem[k] is the tracking error of the VPP. Thus,
βc[k] = χ∗c/n

c
r[k] and βd[k] = χ∗d/n

d
r[k]. The solution to (6)

is provided in the theorem below 1.
Theorem 1: Define

nerror[k] =


ε[k]

P rate
c

, ε[k] ≥ 0

|ε[k]|
P rate

d
, ε[k] < 0.

The solution to (6) that maximizes the number of accepted
requests for ε[k] > 0 is given by

χc =

min
{
nc
r,

(nd
rP

rate
d +ε)
P rate

c

}
, nc

r > nerror,

nc
r, nc

r ≤ nerror,

χd =

min
{

(nc
rP

rate
c −ε)
P rate

d
, nd
r

}
, nc

r > nerror,

0, nc
r ≤ nerror,

The case when ε[k] < 0 is similar for nd. The proof of
Theorem 1 is omitted here due to space constraints but it
follows directly from convexity and KKT conditions.

Figure 4 presents the application of Theorem 1 to a tracking
VPP with 2000 packetized devices that maximizes the total
number of accepted packets each time instant k.

IV. PACKET COMPLETION AND STEADY STATE

In this section, selected system properties of PEM are
detailed for the first time. The first property focuses in the
mechanics of expiring packets, which is related to the VPP
timers that keep track of the number of DERs transitioning
from c/d mode to standby mode. The second property relates
to direct computation of the nominal PEM control that exactly
positions the mean dynamic state of DERs at the desired set-
point.

1Note that F(χ) is only positive semi-definite. Thus, the optimal solution
may not be unique.

Figure 4. Applying Theorem 1 to a VPP that employs a fleet of 1000 TCLs
and 1000 ESSs whose parameters are provided in [20], [21]. The VPP is
tracking a detrended and scaled automatic generator control (AGC) dispatch
signal from ISO New England [22]

A. Packet completion rates
The existence of a stationary distribution for (4) when βc

and βd are constant inputs is straightforward since the PEM
system was designed to be described by an irreducible and
aperiodic Markov chain model. A control law for βc and βd
was provided in the previous section, therefore, the interest of
this section is on the steady state behavior of the signals β−c
and β−d . The analysis focuses on β−c as case β−d is similar.
Below it is shown that, at steady-state, β−c is a constant scalar
that depends on the number of timer bins and how packet
interruptions are designed by matrix Cp,h in (5).

Assume that control βc is fixed and (4) has reached its sta-
tionary distribution. Recall from (5) that q+

c = βcTreq,c,Cd
qsb =

βcq̄
c

sb, and note that the j-th component of xp,c is

x(j)
p,c [k] = x(j−1)

p,c [k − 1] + βcC
(j)
p,c q̄

c
sb[k − 1],

where C(j)
p,c is the j-th row of Cp,c. Iterating j− 1 times gives

x(j)
p,c [k] = x(1)

p [k − j − 1]︸ ︷︷ ︸
βcC

(1)
p,c q̄

c
sb[k − j − 2]

+βc

j−2∑
i=0

C(j−i)
p,c q̄ c

sb[k − i− 1]

By definition,

β−c [k] =
x

(np)
p,c [k]∑np

j=1 x
(j)
p,c [k]

=
βc
∑np−1
i=0 C

(np−i)
p,c q̄ c

sb[k − i− 1]∑np

j=1 βc
∑j−1
i=0 C

(j−i)
p,c q̄ c

sb[k − i− 1]
.

Under the assumption of stationarity, it follows that

β−c =

(∑np−1
i=0 C

(np−i)
p,c

)
q̄ c

sb(∑np

j=1

∑j−1
i=0 C

(j−i)
p,c

)
q̄ c

sb

=
C1q̄

c
sb

C2q̄
c

sb
.

It is only left to show that β−c is independent of q. Observe that
C1, C2 ∈ R1×N and q̄ c

sb ∈ RN have all positive components.
Also, Ciq̄ c

sb = Tr(Ciq̄
c

sb) = Tr(q̄ c
sbCi) and CiC

†
i = 1, where

Tr(·) and (·)† denote the trace operator and the Moore-Penrose



pseudo inverse, respectively. In particular C†i = C>i /(CiC
T
i ).

It then follows that

β−c [k] =
C1q̄

c
sb

C2q̄
c

sb
=

Tr(C1q̄
c

sbC2C
†
2)

Tr(C2q̄
c

sb)
=

Tr(C†2C1q̄
c

sbC2)

Tr(C2q̄
c

sb)

≤ λmax(C†2C1)
Tr(q̄ c

sbC2)

Tr(C2q̄
c

sb)
= λmax(C†2C1)

≤ C1C
†
2 .

The inequality above follows since all matrices involved
are positive semidefinite and rank one. In the simple case
without packet interruptions, one has C(i)

p = (0, · · · , 0) for
i = 2, . . . , np implying C1 = C

(1)
p and C2 = npC

(1)
p . This

gives β−c = 1/np in the stationary distribution.
Example 1: Consider a system in steady state with βc =

βd = 1 (to increase packet interruption rate) and a timer with
np = 20 bins. The analytic upper bound for a fixed Cp,c ∈
Rnp×N is 0.0515 whereas a direct simulation show β−c =
0.0507. Without packet interruptions, β−c = 0.05 = 1

np
.

Remark: Simulations suggest that within the capacity of the
system (low opt-out rates) the values of β−c and β−d remain
close to 1/np. Figure 5 shows such observation when tracking
a sinusoidal reference using Theorem 1. This suggests future
work on a simplified model is derived ignoring the rational
dynamics of β−c and β−d by approximating both as 1/np.
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Figure 5. Depicting the long term behavior of β−
c and β−

d when tracking a
sinusoid with PEM. Notice that β−

c , β
−
d ≈

1
np

= 0.05.

B. Nominal response of PEM system
When manipulating resources, such as DERs, the grid

operator must consider the minimal power output level of the
VPP that provides flexibility for tracking and at the same time
allows for each individual DER to satisfy its needs. In this
vein, a definition for the nominal response of a PEM system
is given.

Definition 1: The nominal response of a VPP under PEM
described as in (4) is the minimum constant power signal for
which QoS is sufficiently satisfied for the average DER under
PEM.

Knowing this nominal response provides a baseline over
which flexibility can be measured [23], [24], and establishes
the first step in the development of a virtual energy storage
model that is capable of providing ancillary services to grid
operators through DERs. This nominal behavior is character-
ized in terms of the nominal control β∗ = (β∗c , β

∗
d ) that is the

Figure 6. QoS positioning of DERs for a VPP with 1000 TCLs and 1000
ESSs. The mean dynamic state of each DER population satisfies (7c) with
equality for the specified population set points with nominal control β∗

c =
0.206 and β∗

d = 0.145.

solution of the following nonlinear non-convex optimization
problem:

β∗c , β
∗
d = argmin

βc,βd∈[0,1]

n∑
i=1

Pi subject to (7a)

q∗i = MM̃(β, β−) q∗i , (7b)

(q∗i )> xiv ≥ ziset, (7c)
where Pi = Ciq

∗
i is the demand power corresponding to the i-

th class of DERs when at steady state provided by q∗i , xiv ∈ X i
is the vector of values (e.g., temperature, SOC, etc) associated
to the bins of the i-th DER class, ziset is the desired set point
for the dynamic state of the ith DER class. As showed in Sec-
tion IV-A and since packet interruptions are negligible when
the mean dynamic state sits at the set-point, it is reasonable to
assume β−c = 1/np = β−d . For βc and βd constant, a stationary
distribution is guaranteed to exist from (7), which implies that
(7b) always possess a solution. An observation that allows
for this problem to be solved is that

∑n
i=1 Pi is a monotone

function with respect to βc, βd. Similarly, the average dynamic
state (q∗i )> xiv varies monotonically as a function of βc, βd for
any DER class i. Additionally, recall that the solution space
is limited to βc, βd ∈ [0, 1]. Therefore, there exist a unique
solution for (7). Figure 6 depicts this nominal response of
a VPP with two DER populations (TCLs and ESS). In the
case of more than two DER populations, the nominal response
may not always correspond to QoS at the specified set point.
However, the average dynamic states will always be above
those desired set points, which satisfies QoS.
Remark: Interestingly, the nominal control β∗c and β∗d is
invariant with respect to the proportion of the DER classes
and the number of devices in each DER population. It only
depends on the parameters of (4), including packet length and
height and sampling time, and, thus, provides a viable avenue
for constructing a virtual energy storage model of a VPP.

V. OBSERVABILITY AND EKF FOR PEM
A critical aspect in demand dispatch techniques such as

the ones in [4], [5] is to infer the bin distribution out of
limited information shared by DERs. PEM is no different in
this aspect, which amounts to the property of observability for



the PEM system (4). Thus, this section focuses on studying
the observability of the PEM system, where only power and
number of charging/discharging requests is shared. The state
equation (4a) can be rewritten as a discrete-time bilinear
system:

q[k + 1] = Aq[k] +

m∑
i=1

ui[k]Niq[k] =: Au[k]q[k], (8a)

y[k] = CP (k, u[k]) q[0], (8b)
where q[k] is the distribution of DERs in each bin of the
system at time-step k, u[k] ∈ U ⊆ [0, 1]m is the control
input over time step k, and matrices A,Ni and C can be
easily obtained from the description in Section II. Note that
P (k, u[k]) := Au[k] · · ·Au[1] and P (0, u[k]) := I, ∀k ∈ N
recursively describes the k-step state prediction. It is usually
the case that u = {βc, β

−
c , βd, β

−
d }, which makes m = 4 (for

the case of only EWHs u = {βc, β
−
c }, i.e., m = 2). Note

that system (8) have β−c and β−d as “free” inputs as is the
case for the systems in [4], [5], where these inputs serve for
switching DERs from ON to OFF. Due to the full knowledge
of the timer states by the PEM VPP, the focus is in the free
case for β−c and β−d . Observability of (8) is now described in
terms of observability of linear time varying systems [25].

Definition 2: System (8) is called observable on the time
interval [0, T ] if any initial state x[0] = x0 is uniquely deter-
mined by the corresponding response y[k] for k = 0, . . . , T .

Define the observability Gramian matrix as

Wk,u :=

k∑
j=0

Zj,u[k] =

k∑
j=0

P (j, u[k])>C>CP (j, u[k]) (9)

Note that Wk,uq[0] =
∑k
j=0 P (j, u[k])>C>y[k]. Also, Zk,u

satisfies Zk+1,u = A>u[k]Zk,uAu[k] with Z0,u = C>C. If the
observability Gramian is nonsingular, then

q[0] = (Wk,u)−1
k∑
j=0

P (j, u[k])>C>y[k].

DefiningO0,T = (C> P>(1, u[k])C> · · · P>(T, u[k])C>)>,
one has that WT,u = O>0,TO0,T . In this context, observability
is rephrased in the next definition.

Definition 3: System (8) is observable if there exist an input
sequence on the interval [0, T ] such that Wk,u is positive
definite.
The property of observability can be attained or is kept if [0, T ]
is incremented. On the contrary, it can be lost by reducing the
time interval. It was also shown in [26] that a randomized
piecewise constant input sequence act as universal inputs for
bilinear systems. From [27], one can also test for observability
geometrically, by checking that rank (Ōn) = n where Ō1 =

C, Ōi =
(
A>Ō>i−1 N>1 Ō>i−1 · · · N>mŌ>i−1

)>
. The PEM

system has been designed in a manner that Definition 2 holds
even in the case that βc = βd = 0. For instance, all Au and
P (k, u) matrices are stochastic and correspond to irreducible
and aperiodic (due to self-loops) discrete Markov chains. The
next example illustrates the observability property for a PEM
system.

Example 2: Consider a fleet of TCLs whose deadband
is partitioned into 4 dynamic state bins (see [21, (10) and
(12)] for more details on TCLs). Since TCLs do not produce

discharging requests the natural evolution of DERs is provided
by the transition matrix

M =



0.1 0 0 0 0.3 0 0 0

0.9 0.1 0 0 0 0 0 0

0 0.9 0.1 0 0 0 0 0

0 0 0.9 0.2 0 0 0 0

0 0 0 0 0.7 0.1 0 0

0 0 0 0 0 0.9 0.1 0

0 0 0 0 0 0 0.9 0.1

0 0 0 0.8 0 0 0 0.9.


,

where the entries of M are indicative of TCLs. The expression
for the instantaneous switching of DERs governed by the VPP
is

M̄(β, β−) = I2N + βc

(
0N Treq

0N Treq

)
︸ ︷︷ ︸

=: N̄1

+β−c

(
−IN 0N

IN 0N

)
︸ ︷︷ ︸

=: N̄2

,

where C = (1, 1, 1, 1, 0, 0, 0, 0), and the probability of re-
quests matrix is Treq = diag {0.99, 0.6, 0.2, 0.05}. Here A =
M , N1 = MN̄1, N2 = MN̄2, m = 2, u1 = βc, and u2 = β−c .
One can easily show that for any randomly chosen u1 ∈ [0, 1]
and u2 ∈ [0, 1/np] (np = 20 timer bins), the maximum input
sequence length needed for achieving observability is 7. An
experiment was performed in which the system was run for
2000 random input sequences. Sequences of at least length
2 to at most length 7 are needed for the system to become
observable. Even in the case when β−c is fixed as per Section
IV-A the maximum input sequence needed has length 7. For
simplicity, the system in this example did not considered opt-
out dynamics [20], [21]. However, even with opt-out included,
if observability is lost, then one can increase the observation
interval [0, T ] until observability is recovered. Finally, the rank
test for observability, in this example, is also satisfied for
n = 8. This example holds for any non-zero choice of the
components of M as long as the matrix structures given in (4)
are preserved.

With the bilinear PEM system being observable, conver-
gence of an observer algorithm is guaranteed. To take into
account measurement noise, one can formulate an Extended
Kalman Filter (EKF) observer for system (8). The extended
Kalman filter is usually given in two stages:

i. Measurement update:
K[k] = Cov[k|k − 1]C>(CCov[k|k − 1]C>+R1[k])−1

q̂[k|k] = q̂[k|k − 1] +K[k](y[k]− Cq̂[k|k − 1])

Cov[k|k] = Cov[k|k − 1]−K[k]CCov[k|k − 1]

ii. Time update:
q̂[k + 1|k] = Au[k]q̂[k|k]

Cov[k + 1|k] = Au[k]Cov[k|k]A>u[k] +R2[k],

where q̂[k|k − 1] is the predicted state of the system state,
q̂[k|k] is the most recent estimate of the system state,
Cov[k|k−1] denotes the predicted system covariance, Cov[k|k]
denotes the current system covariance estimation, R1 is the
measurement noise covariance and R2 is the time update noise
covariance. The convergence parameters for time-varying lin-
ear system are trivial [28, Section III]. Figure 7 illustrates
how the EKF is able to accurately estimate the output power
and also the number of charging/discharging packet requests.
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Figure 7. EKF estimation of aggregate power output and charging and
discharging packet requests for a VPP coordinating 1000 TCLs and 1000
ESSs while tracking ISO-NE AGC reference signal [22].
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Figure 8. Illustrating the high accuracy of EKF estimation for ESS population
at minute 1000, which is representative of overall performance for ESSs and
TCLs.

Also, in Fig. 8 a snapshot of ESS distributions is shown
for minute 1000 of the simulation for the opt-out, charging,
standby and discharging populations.

VI. CONCLUSIONS

This paper presents the systematic analysis for a model
of the aggregate system response of a population of diverse
distributed energy resources based on a bottom-up energy
request methodology known as packetized energy management
(PEM). Future work will build on these results to derive PEM
performance guarantees by quantifying the VPP family of
reference signals that can be tracked and position available
VPP flexibility for techno-economic power system objectives.
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